
Software Development

Methodologies

Jonathan Hoyle
Eastman Kodak

Thursday, June 2, 2005

Overview

• Predictive Methodologies

– Waterfall

– Other Predictive Methodologies

• Agile Methodologies

– Extreme Programming (XP)

– Other Agile Methodologies

– Pros & Cons

• World Trade Center Project

Predictive Methodologies

• A reaction to “Cowboy Programming”

• A planned development life cycle

• Using practices which favor a well-defined

outcome at each stage

• Plan-driven

• Tends to be Document-based

• Should include all phases of product development:

Engineering, QA, Documentation, etc.

• Come to be identified with Waterfall methodology

Waterfall Methodology

• First proposed by Winston W. Royce in 1970

• Traditional approach still most dominant

• Can be iterative (Royce encouraged this)

• Motivation:

– institute a controlled process

– incorporate risk management

– incorporate proper design principles

– estimation & progress tracking

• More robustly defined by CMM / CMMI

Waterfall Process

• Orderly sequence of distinct phases or stages

• Each phase is well-defined, following:

– Analysis

– (Specify)

– Design

– Coding

– Testing

• Tasks can be pre-planned

• Problems analyzed and resolved well in advance

• Milestones and deliverables clearly defined

Waterfall Model Flow

Other Predictive Methodologies

• Spiral Methodology

 (iterative Waterfall)

• SSADM

• Clean Room Design

• Rational Unified Process (RUP) by Rational Software

Agile Methodologies

• Welcomes change in requirements, even late into the

development cycle

• Reaction to “thick” or “heavyweight” methodologies

• The motivation is to create a process by which

software development can handle change without

sacrificing good programming principles

• Create software iteratively, adding features as you

go, rather than wait until the end for a working app

• Voice of customer part of the process

Agile Methodology Manifesto

We are uncovering better ways of developing software by

doing it and helping others do it.

Through this work we have come to value:

Individuals and interactions over processes and tools

Working software over comprehensive documentation

Customer collaboration over contract negotiations

Responding to change over following a plan

That is, while there is value in the items on the right, we value

the items on the left more.

Extreme Programming (XP)

• The most well known of Agile methodologies

• Created by Kent Beck in 1996

• A growing community of software developers

• Best known for contributions in these areas:

– Testing (Test first philosophy)

– Design (Simplicity & Refactoring)

– Coding (Paired programming)

– Iterations (User stories, small fast releases)

XP: Testing

• Test First Philosophy

– Before implementing a feature or fixing a bug, a

unit test is written first

– Verify the test fails (since no code is written)

– Now write the code to get the test to pass

• All unit tests must pass before checking in

• If any code causes unit tests to fail, those

changes are backed out via source control

• All code must be associated with some unit test

XP: Design & Coding

• All production code is Pair Programmed

• Pairs swapped on a regular basis

• No code ownership

• All code must conform to agreed upon standards

• Design: “The simplest thing that can possibly work.”

• Refactor whenever possible (continuous design)

• Little to no comments in the code

• No functionality is added early

• Optimization saved for last

XP: Iterations

• Frequent small releases (iterations)

• Features broken down as “user stories”

• Stories get estimated by engineers and customer

determines which stories go in that iteration

• Stories that are too big must be broken down

• Daily “stand up” meetings with all hands

• Retrospective after each iteration (no management)

• Fix XP when it breaks (change what doesn’t work)

• NO OVERTIME

XP: World Trade Center Project

• When Gene Codes Corp. was contracted to

create the forensic DNA identification

software to identify the victims of the

World Trade Center, XP was the

methodology chosen to create this software.

• One of the most successful XP projects

• My personal experience with this is

explained later.

Other Agile Methodologies:

Scrum

• A wrapper around current processes

• Management prioritizes feature list

• 30 day “sprint” for development & QA

• At the end of each sprint, engineers demo the

software showing changes since previous sprint

• A releasable version with each monthly cycle

• 15 minute daily team meeting:

– What did you do since last time? Any obstacles? etc.

– Discuss current backlog for this sprint

– Load balance work amongst team, if needs be

Scrum

Other Agile Methodologies:

DSDM

• Management delivers prioritized list of requirements

• Prototype is built using MoSCoW principle:
– MUST have this

– SHOULD have this, if at all possible

– COULD have this, if it doesn’t affect anything else

– WON’T have this, but will in the future

• Each “refinement” is strictly time-boxed (dropping

lowest priorities as time or money runs out)

• At the end of a time-box, management reviews,

modifies requirements, creates new priorities, etc.

• Lather, rinse and repeat

DSDM

Other Agile Methodologies:

Crystal

• Differing levels of agility (opacity): Crystal Clear,

Crystal Yellow, Crystal Orange, Crystal Red

• Larger teams use less agility

• Software delivered incrementally (2-3 months)

• Automated regression testing

• Direct user involvement

• Team must hold pre- and post-Increment workshops

• Mid-increment evaluation for course-correction

Crystal

Agile Pros & Cons

• Works well with:

– Volatile changes in requirements

– Iterative releases

– Consistent small team of developers

• Doesn’t work well with:

– Large or distributed development teams

– Multiple project environment

– Inflexible corporate culture

– Heavily pre-designed project

– A pre-scheduled timeline covering a lengthy period

