Jonathan Hoyle

Interview at the MathWorks 1/10/05

Overview

- ✓ Educational Background
- ✓ Professional History
 - Early Career
 - Eastman Kodak
 - Gene Codes
- ✓ Involvement with Apple
- ✓ Skills & Achievements

Educational Background

- ✓ University of Delaware
 - Bachelor of Science, 1986
 - Major: Mathematics
 - 1st Minor: Computer Science
 - 2nd Minor: Philosophy
- ✓ University of Michigan
 - Graduate Studies, 1986-1988
 - Major: Mathematics
 - Minor: Computer Engineering

Early Career

- ✓ Individual Consulting (1989-1994)
 - Macintosh installations
 - Mac software port to Windows 3.0
 - Development on Turbo Pascal for Windows
 - Released freeware Poker game for Mac OS
- ✓ DuPont Core Technology (1993-1994)
 - Development of HyperColor software
 - 68K port to PowerPC
 - Development on MPW and CodeWarrior

Eastman Kodak (1994-2001)

- ✓ Kodak's Digital Science Drivers Group
- ✓ CMM Level 2 efforts:
 - Documentation and source control
 - Acceptance & Unit tests
 - Code Reviews and Low Level Designs
- ✓ Weekly Tech meetings with presentations
- ✓ Responsible for
 - Designing objects for DGFramework
 - Universal Calibration

DGFramework

- ✓ Cross platform C++ framework
- ✓ Responsible for several classes:
 - DGCStr (a detailed Unicode string class)
 - DGList<> (a templated sparse array)
 - − DGPtr<> (a templated smart pointer)
 - several others
- ✓ PowerPoint presentations given at the weekly DGTech meetings

Universal Calibration

- ✓ Primarily responsible for developing Universal Calibration for Kodak's printers
- ✓ Written in Metrowerks CodeWarrior C++ for Mac OS and Visual C++ for Windows
- ✓ Printer-specific data house in plug-ins
- ✓ Available for a range of thermal printers:
 - Kodak DS XLS 8600/8650/8670
 - Kodak Polychrome DCP 9000/9300
 - Kodak 4700

Kodak Calibration Utility

ak Profes General					Calibration
_ Densito	Densitometry Input				Densitometer Device
Square	K	С	М	Υœ	Mode1: X-Rite™ Digital Swatchbook \$
1					The state of the s
2		- 17			Type: Status T ♦
3	- 3	- 6			
4		95			— Calibration Setup
5		50	,		out to the second
6					Patches: 15 💠
7		100			
8		***			Algorithm: Default 💠
9		89	D	₽	
		- 22			

Gene Codes (2001-present)

- ✓ Sequencher
 - Overview
 - Development
- ✓ World Trade Center Project (*M-FISys*)
 - Timeline
 - Project Philosophies
 - Kinship Analysis

Sequencher Overview

- ✓ Leading Bioinformatics software package
- ✓ DNA sequencing & analysis
- ✓ Used by:
 - Cancer/Aids research
 - Medical and drug companies
 - Universities
- ✓ Available for both Macintosh and Windows
- ✓ Specialized Forensic version for FBI, etc.

Sequencher Development

- ✓ CodeWarrior C++ both Mac & Windows
- ✓ Written in THINK Class Library framework
- ✓ Single cross-platform code base
- ✓ Primarily responsible for replacing Classic code with Carbonized API's
- ✓ Carbonized version of Sequencher was release as version 4.2 in early 2004
- ✓ Updated version for Windows also released

Sequencher DNA analysis

World Trade Center Project

- ✓ On September 11, 2001, 2,752 people were killed in the attacks on the World Trade Center.
- ✓ Over 20,000 remains were recovered, the vast majority of which would require DNA matching for identification.
- ✓ Existing software tools for DNA identification (such as CoDIS) proved wholly inadequate for the scope and magnitude of this project.
- ✓ The entire company devoted its resources to creating the identification software need by NYC.

2001 World Trade Center Timeline

- ✓ **September 17:** Armed Forces DNA Identification Lab [AFDIL] asks Gene Codes to update *Sequencher* for the Pentagon and Shanksville crashes.
- ✓ September 28: Office of the Chief Medical Examiner [OCME] in New York City contacts us for new software.
- ✓ October 15: Using the *Extreme Programming* [XP] methodology, software development is underway.
- ✓ **December 13:** *M-FISys* (Mass-Fatality Identification **Sys**tem) has its first release to the OCME.
- ✓ Since: Weekly releases personally delivered to the OCME, to accommodate rapidly changing requirements.

M-FISys Project Philosophies

✓ Test First

- New functionality must have Unit Tests written first
- Once the test is in place, write code to make it pass
- Single integration machine to submit and run tests
- ✓ Paired Programming
 - Two eyes are better than one
- ✓ Thin Design
 - The simplest thing that can possibly work
 - Design to allow future refactoring
- ✓ Small Releases
 - Fully functional releases every week or two

M-FISys Forensic Software

Kinship Analysis

- ✓ Not all identifications could be made based upon personal effects
- ✓ Cheek swabs of the family members were taken to create a DNA pedigree
- ✓ Through the mathematics of Kinship Analysis, remains can be identified through a victim's family members
- ✓ Although *M-FISys* was done in XP, I was the sole author of the Kinship prototype

Kinship Prototype on Mac OS X

Relationship with Apple

- ✓ Continued close relations with Apple's Developer Relations community
- ✓ Attended 8 of the last 9 Apple Worldwide Development Conferences
- ✓ Other Recent Technical Meetings:
 - PowerMac G5 Optimization Course
 - Mac OS X 10.4 Tiger Talks

Skills & Achievements

- ✓ "Development Under Extreme Conditions"
 - co-authored with company CEO & head of QA
 - presented at 2003 Symposium on BioComputing
- ✓ Presentation of Forensic Mathematical Analysis of World Trade Center attacks
 - presented at 2003 Academy of Forensic Sciences
- ✓ Winner of the Most Functional Output award of the 2004 International Obfuscated C Code Contest

Development Environments

- ✓ Strong knowledge in C/C++
- ✓ Mac OS development using the Classic and later Carbon API's
- ✓ Proficiency in Metrowerks CodeWarrior
- ✓ Proficiency in RealBasic RAD environment
- ✓ Experience with *Microsoft C# .NET*
- ✓ Some experience with Java and connectivity with C++ via JNI and RMI

Freeware Poker Game (1993)

AOL Top 10 Download March 1993

IOCCC 2004 Most Functional Output

```
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#define _
                               ;double
#define void
                               \times, \times
#define case(break,default)
                               break[0]:default[0]:
#define switch(bool)
                               ;for(;x<bool;
#define do(if,else)
                               inline(else)>int##if?
#define true
                               (--void++)
                               (++void--)
#define false
char*0=" <60>!?\\\n"_ double[010]_ int0,int1 _ long=0 _ inline(int else){int
010=!0 _ l=!0;for(;010<010;++010)l+=(010[double]*pow(else,010));return l;}int
main(int bool,char*else[]){int l=1,x=-*0;if(else){for(;!<010+1;!++)![double-1]
=bool>l?atof(l[else]):!O switch(*0)x++)abs(inline(x))>long&&(long=abs(inline(x
)));int1=long;main(-*0>>1.0);}else{if(bool<*0>>1){int0=int1;int1=int0-2*long/0
[0]switch(5[0])putchar(x-*0?(int0)=inline(x)&&do(1,x)do(0,true)do(0,false)
case(2,1)do(1,true)do(0,false)6[0]case(-3,6)do(0,false)6[0]-3[0]:do(1,false)
case(5,4)\times?bool?0:6[0]:7[0])+\times0:8[0]),\times++;main(++bool,0);}}}
```

ANSI compliant and compiles with no warnings!

Thanks!