C++ Topics

Jonathan Hoyle
Eastman Kodak
2/8/01

Overview

e Constructors
e Destructors
e References

e Const
eQ&A

Constructors

e ...are called only after object memory is
allocated (not called if new fails)

e ...are invoked after its base class
constructors are completed

...are not inherited

...do not have return values, can’t “fail
...cannot be called directly

...do not have function addresses
...cannot be declared static or virtual

7

DPefault Constructor

e Constructors with no parameters (or
parameters which all have defaults)

e |f no constructor is defined for a class, a
public default constructor is implied

e The empty parantheses are not used
when invoking the default constructor:

TypeName IDname;
TypeName IDname();

Constructors with 1 parameter

e Can be constructed with either () or =:
class X

{ XC);
X(int 1);
X &operator=(int 1);
void operator()(int 1); };

X al = 0;
X aZ;

a2 = 0;
X bl(0);
X bZ;

YAUDK

Explicit Constructor

e Construction with = can be supressed with

the explicit keyword:

class XString
{
public:
XString(char *1nString);
explicit XString(int inSize);
s

XString x1();
XString x2 = ;
XString x3(256);
XString x4 = 128;

Copy Constructors & Assignments

e Copy Constructors have this prototype:
TypeName: : TypeName(TypeName &inVar);

e |f no constructor is defined, a (bitwise)
public copy constructor is implied

e Check code for overlap situations:

X &X::operator=Cconst X &inVar)

1
(mString, @, 256);
(mString, inVar.mString);

What is a = Static

Constructor 2
e Technically, there is no such thing in C++

e Usually term is used to describe a static
method which creates an object:

class X

{
public:
XC),
~X(C);
static X *Create()
{ return new X; }

b

What is a “ Virtual Constructor’ ?

e Technically, there is no such thing in C++

e Describes a way to create an object
whose type is determined at runtime:

class Base I -
class Derivedl: public Base { ... };
class Derived2: public Base { ... };

Base *Base::Create(int inType)

{
1f (inType == 1) return new Derivedl;
1f (1inType == 2) return new DerivedZ;
return new Base;

What is an =~ Anonymous

Constructor 2
e Technically, there’s...no wait! It is in C++!

e It’ s the construction of an object without
explicitly assigning it to a variable

class X
{
public:
X(int x);
5

int foo(X 1inVar);
foo(X(1));

Constructing & Memory Allocating

e What if you want the memory allocation
to take place independently from
construction?

— Allocation & Construction at the same time:
X *xPtr = new X;

— Allocation without Construction:
X *xPtr = (X *) new char[sizeof(X)];

— Construction without Allocation:
new (xPtr) X;

Constructing Arrays of Objects

e Trivial when using the default constructor:
X myArray[10];
e How do you do it without using the default?

class X

{
public:

X(char *inString, int inSize = 256);
¥

X myArr[3] = { , X(), X('C7, 100) §;

Constructor Errors

e Since Constructors cannot “fail” and do
not have a return value, here are some
options:

— Require a separate /nitialization method to
be invoked before the object can be used

— Include a reference to an error parameter in
the constructor

— Throw an exception

Constructor/Initialization pair

e Essentially a two-part construction

e They re “zombie objects” until
initialized

class X
{
public:
XC);
bool init();
b
X X;

if (x.init())

Constructor Error Parameter

e Requires the user to check the error
after construction:

class X

{
public:

X(bool &outVal);
s
bool 1fOK = false;
X x(1f0K);
1f (1f0K)
{

Constructor Exception

e You' ve jumped out of the object’ s
scope

e Object never lived, destructor not called

try
1

X X;
¥

catch (bool 1inError)

{

1

Bad Constructor Error Handling

e Why wouldn’ t this work?

bool X::1ni1t()
{ h
X::XC)
{
bool 1fOK = init();
1f ('1fOK)
{

delete this;
this = X

Constructor Gotcha s

e Do not assume polymorphic behavior from
virtual functions inside constructors

e Don’ t use this too early:

X::XC) { ... foo(this); ... }
e Be careful of ambiguity between type
conversions and constructors:

X::X(Cconst Y &) { ...}
X::X(Cconst X &) { ...}
Y::operator X&() { ... }

PDestructors

e ...are called before object memory is
deallocated (not called if delete on NULL)

e ...are completed before its base class
destructors are invoked

...are not inherited

...have only one prototype, no parameters
...may be called directly

...cannot be declared static

...can be virtual (and even pure virtual)

Virtual Destructors

e Necessary for polymorphism
e You almost always want to make it virtual

class Base { ...}
class Derived: public Base { ... };

Base *bPtr = new Derived;
DoStuff(bPtr);
delete bPtr;
e In above example, Derived’ s destructor

will never get called if it' s not virtual.

Pure Virtual Destructors

e Destructors can be pure virtual as well:
class X

i
public:

XC J;
virtual ~X() = ;
s
e The class necessarily becomes abstract

e Subclasses are not (dest’ s not
inherited)

o Mustiimblement destructor even if pure

[Destructing & Memory Deallocating

e What if you want the memory deallocation
to take place independently from
destruction?

— Deallocation & Destruction at the same time:
delete xPtr;

—Deallocation without Destruction:
delete (void *) xPtr;
delete [] (void *) xPtr;

— Destruction without Deallocation:
xPtr->~XQ);

Pass by Reference

e Allows variables to be modified without
having to check pointer validity

e Const reference passing gives better

performance than pass by value:
volid foo(X 1n0Obj);
volid foo(const X &inObj);

e Types must match, no conversion:
volid incr(long &x) { x++; }

short x = 12;
incr(x);

Reference variables

e “References are synonyms, not objects.”
int *ptrl = aPtr;
int &refl = mylnt;

e Types must be exact:

unsigned int ulnt = 0;
int &refZ2 = ulnt;

int intArray[10];
int *&ref3 = intArray;

e Must be assigned at time of declaration
e Can’ t have arrays of references

const pointers

e Read from right to left (mostly):

const T *p;
const T *const p;
T const *p;
T *const p;
T const *const p;

e Note that const T *p==T const *p

@ enum’ s or const’ s?
— enum definitions do not take up memory
— const allow freer additions

const member functions

e Indicate method will not change object:
void X::foo();
void X::bar() const;

e Functions operating on const objects are

free to call const methods:
vold ExamineX(const X &inObject)

{
1nObject.foo();

inObject.bar();

CONnSt cast< >

e Very dangerous, allows you to overwrite
const data:

void foo(const int &inVal)

{
int &theVal = const_cast<int & (inVal);

theVal++;
¥

int x = 5;
foo(x);
cout << X;

logical const vs. bitwise const

e The intention behind const_cast< > isto
allow changes to the “bitwise state” to a
class while leaving the “logical state”.

e For example, performing diagnostics,
optimization or caching.

e const_cast< > changes to an object in
read-only memory is undefined behavior

e Better than const_cast< >, use the new
mutable keyword

const cast<> vs. mutable

e Variables declared mutable are free to be

modified even if the method is const:
class X

{
public:

double getData() const;
{ mCount++; return mData; }

protected:
double mData;
mutable int mCount;

b

