
ADHOC/MacHack 20, 2005

Jonathan W. Hoyle, page 1/18

Cross-Platform Approaches from a Macintosh
Perspective

Jonathan W. Hoyle
jonhoyle@mac.com

Abstract
One of the many difficulties that Macintosh software developers must face is how
to justify to their management the expense of development on the Mac when less
than 1/10 of users are on it. Cross-platform development seems to be the only
economically feasible way, yet so many of these approaches give you "lowest
common denominator" solutions. This paper will detail some of the many
approaches to cross-platform development from a Macintosh perspective,
looking at the pros and cons of various frameworks and modern RAD
applications. Highlights and pitfalls will be addressed for environments such as
REALbasic and Java, but most emphasis will be placed on a C++ development
perspective. Frameworks such as CPLAT, wxWidgets (formerly wxWindows) and
Qt will be looked at, as well some legacy frameworks. Design principles which
expedite a cross-platform strategy (such as MVC) will also be discussed. In the
end, some recommendations can be made for best practices and viable
approaches, plus downloadable sample projects will be made available.

Outline
1. Motivation
2. A Word About Java
3. Development Considerations

a. C/C++ Compilers
b. Mac OS X on Intel
c. Architecting Using Model-View-Controller

4. Legacy Cross-Platform Frameworks
a. Visual C++ Macintosh Cross-Compiler
b. Yellow Box for Windows
c. Mac2Win
d. PowerPlant for Windows

5. Modern Cross-Platform Frameworks
a. CPLAT
b. wxWidgets (formerly wxWindows)
c. Qt
d. Other Cross-Platform Frameworks

6. REALbasic with a C/C++ Dynamic Library
a. Creating the REALbasic GUI
b. Creating the C++ Library
c. An Example: The C++ Code
d. An Example: The REALbasic Code

7. Five Rules for a Successful Cross-Platform Project
8. Summary

ADHOC/MacHack 20, 2005

Jonathan W. Hoyle, page 2/18

1. Motivation
The Macintosh is an excellent computer to use, primarily due to its ease of use and the power it gives to
the user. Unfortunately, due to the Macintosh’s smaller user base, it becomes difficult for software
developers to justify to management why a given application should be ported to the Macintosh. Even
with the more powerful tools available on the Mac, the ratio of expected Macintosh sales to development
dollars is usually much lower than on Windows. One practical solution to this is the use of a cross-
platform framework or development environment. Unfortunately, not all have strong support for the
Macintosh. We will examine some of the most popular cross-platform approaches, with a strong eye on
how well it works on Mac OS X. We will focus primarily on Mac OS X and Windows as our required
platforms, and not consider any strategy that does not at least include these; Mac OS Classic and Linux
will be mentioned in passing when a particular solution supports them. Furthermore, we will consider
only those approaches which will be compatible with Apple’s transition to Intel-based Macintoshes.

2. A Word About Java
Nowhere else is cross-platform development as important a priority than in the Java programming
environment. This is arguably its most important contribution to the development community. In the
past 10 years, Java has gained more market share and has had more books published about it than any
other programming language. Furthermore, Apple itself has stated that Java is their official cross-
platform strategy, leaving C++ positioned for platform specific development of Mac OS X. One might
therefore ask: Why would anyone consider anything but Java for cross-platform development?

Although Java is a powerful approach for cross-platform development, the following are some important
points to consider before excluding C++ from your set of options:

♦ There are two very different technologies both named Java: the front-end programming language
and the back-end bytecode compiler. What makes Java cross-platform is the latter of these two.
Although Java the language and Java the bytecode are usually intertwined, this is merely a matter
of convention. Other languages can produce Java bytecode, and Java may be compiled into
platform-specific assembly languagea.

♦ Java programs often suffer in performance due to the intermediary bytecode layer that requires
translation by the Java Runtime Environment.

♦ The future of Java remains uncertain, as Microsoft’s continued attempts to compete with it may
eventually overwhelm the technology, particularly with the advent of Microsoft’s competing C#
language and .NET framework1.

♦ Java programs often have a “lowest common denominator” look and feel. For example, some
Java programs attach a menu bar to the application window instead of at the top of the desktop.

♦ Java’s promise of being cross-platform has not always been fulfilled, as seen by the many Java
applications which run only on Windows. Applications generated by Microsoft Visual J++ in
particular are known for this, with incompatibilities on non-Windows targets being so extreme
that it prompted Sun Microsystems to launch a lawsuit2.

♦ Ultimately, Java and C++ are not mutually exclusive choices, as JNI (Java Native Interface)
allows a Java application to link with C/C++ code.

Recommendation: If Java does become all or part of your cross-platform solution, it is important to
choose a development environment which properly supports the Macintosh. Although Metrowerks has

a For example, an early version of Metrowerks CodeWarrior shipped with a Java language compiler which could compile directly
to PowerPC assembly without Java bytecode. For the reverse, AMPC (Axiomatic Multi-Platform C) is an ANSI C compiler
which generates Java bytecode [see http://www.axiomsol.com], thus bypassing the need for the Java programming language.

ADHOC/MacHack 20, 2005

Jonathan W. Hoyle, page 3/18

dropped support for Java since CodeWarrior 8.3b, there are still a number of Java IDE’s which are very
powerful and Macintosh friendly. Xcode is an obvious first choice as it comes free with Mac OS X; its
main negative is of course that it is Mac OS X-hosted only, making Windows debugging more difficult.
Of other free Java compilers, Eclipsec stands alone as the best. For commercial products, Borland’s
JBuilderd is adequate for Mac OS X, but the strongest recommendation goes to IDEAe from Intellij, as it
is clearly the best and most powerful modern Java environment today, on any platform for any price.

3. Development Considerations
Many of the C++ frameworks examined here are distributed as source files which need compiling on each
platform, so we will consider the various compiler options. We will also consider how a cross-platform
strategy my be impacted by Apple’s move to Intel. Finally, we will discuss the Model-View-Controller
architecture useful for successful cross-platform project.

3a. C/C++ Compilers
There are essentially two Macintosh C/C++ compilers of note today: Metrowerks CodeWarrior and
Apple’s Xcode. The former has held the dominant market share for the past 10 years; as of March 2004,
90% of all shipping Macintosh applications were developed using CodeWarrior3. However, use of Xcode
has grown dramatically since Apple began shipping Xcode free with Mac OS X 10.3 Panther in 2003,
with 56% of the top Mac developers now using it4. Xcode is based on gcc, so it relies heavily on the
experience and knowledge of the Open Source community. CodeWarrior and Xcode are both excellent
compilers, each offering their own advantages and disadvantages. Both compilers integrate well with
Apple’s GUI design program, Interface Builder. Metrowerks CodeWarrior has the better user interface, a
more optimized compiler, faster compile times and better conformance to ANSI standards. Xcode, on the
other hand, offers such options as Distributed Builds, Fix & Continue, better CodeSense and others.

Unfortunately, CodeWarrior has a very uncertain future since Metrowerks was spun off from Motorola to
the apathetic Freescale. Meanwhile, Xcode has closed the gap against many of CodeWarrior’s
advantages by updating to a more ANSI compliant gcc 4, as well as improving the user interface to allow
a more CodeWarrior-like “condensed” workspace. For those needing to continue support on Classic,
CodeWarrior is required, as Xcode builds Mac OS X-only applications. For those wishing to take
advantage of newer technologies, such as G5 optimizations, 64-bit compilation or Universal Binaries,
Xcode may be the only option, as CodeWarrior currently does not support any of these (and perhaps
never will). In the past year, the migration away from CodeWarrior has been inspired as much from
Metrowerks’ lack of commitment as it has from Apple’s advances with Xcodef.

Although there are many more choices for C/C++ compilers on Windows, Mac developers tend to
gravitate to one of two options: Microsoft Visual Studio and Metrowerks CodeWarrior for Windows.
Visual Studio is obvious because it is the largest and most common Windows compiler, as well as being
the most supported by cross-platform frameworks. CodeWarrior for Windows, although not very well
known among Windows developers, is especially favored by Mac programmers. Using CodeWarrior for
both platforms, a single project file can contain both Macintosh and Windows targets off a single source

b http://web.archive.org/web/20011204194719/www.metrowerks.com/desktop/java/
c http://www.eclipse.org
d http://www.borland.com/us/products/jbuilder/index.html
e http://www.jetbrains.com/idea/
f Since 2003 and the release of 9.0, Metrowerks has seemingly ended Mac development on CodeWarrior, aside from maintenance
updates. In perhaps a larger statement, Metrowerks refused to even attend Apple’s Worldwide Development Conference in 2004,
nor has it yet announced any plans for a next version of CodeWarrior.

ADHOC/MacHack 20, 2005

Jonathan W. Hoyle, page 4/18

base. Up through version 9.4, there is Win32 cross-compiler available in the Mac-hosted tools, thus
allowing the developer to use his Mac for Windows development. Unfortunately, Metrowerks very
recently sold off their x86 compiler technology, so this product is no longer available.

Recommendation: CodeWarrior 9.4’s ability to compile for both Macintosh and Windows targets on the
same project file, along with its superior user experience, would make it the ideal choice for a cross-
platform compiler. Unfortunately, Metrowerks’ continued support for the Macintosh platform remains
highly questionable at this time. With Metrowerks’ selling of its x86 tools, their Windows compiler is no
longer available, nor does it appear that Metrowerks will be able to offer an x86 Macintosh compiler.
Those using CodeWarrior for a pre-existing project may continue to do so, but it is recommended that
they also investigate Xcode. New development projects should use Xcode from the start.

3b. Mac OS X on Intel
The selection of a cross-platform strategy should take into account the recent announcement by Apple
that future Macintoshes will contain Intel chips. Mac OS X on PowerPC and on Intel are not actually
separate platforms from a software perspective, as both are programmed to the same API (Application
Programming Interface). Despite byte-swapping issues, the hardware move to Intel may be a relatively
small effort for the software developer. Xcode 2.1 is available now and can compile Universal Binaries.
REALSoftware has announced support for Intel on future versions of REALbasic. Java applications
should be able to run completely unmodified. It appears that the only development environment that may
be negatively impacted by the move to Intel is Metrowerks CodeWarriorg. This is a particular problem
for applications needing to support Classic Mac OS, as Xcode does not support Classic. Mac OS X for
Intel will apparently not support the Classic Environment, as Apple documentation on Rosetta emulation
specifically states it will not run Mac OS 8 or 9 applications.5

3c. Architecting Using Model-View-Controller
Model-View-Controller (MVC)6 is a way to architect software which separates an application’s core data
(the Model) from its user interface (the View). Typically, the model is written in a platform-independent
manner, so MVC allows the developer to create a separate View for each platformh. The code which
interfaces between the Model and the View is called the Controller. Both Apple7 and Microsoft8 have
documentation for best practices with regard to using MVC.

A well-architected MVC application does not even require a cross-platform framework for porting. By
using available RAD (Rapid Application Development) tools, such Interface Builder for Mac OS X, and
Visual C# for .NET on Windows, thin platform-specific GUI apps can be created very easily, which then
interface with model code. Modern RAD tools are dynamic and easy to learn; such tools are often more
efficient than learning a new, complicated framework API.

4. Legacy Cross-Platform Frameworks
Before describing modern cross-platform frameworks, it is useful to look at some legacy frameworks that
were popular in the past. Note that these older frameworks are either discontinued or are no longer
suitable for modern development and mentioned here for historical context.

g In an amazing combination of stupidity and bad timing, Metrowerks sold its 10-year held x86 compiler technology to Nokia,
mere weeks before Steve Jobs announced the Macintosh’s transition to Intel. As of this writing, Metrowerks has refused to state
publicly what its commitment is for Mac on Intel.
h MVC is often used to make multiple views on the same platform; for example, it often useful to have both a GUI version to ship
to the customer and an in-house command line version for unit testing.

ADHOC/MacHack 20, 2005

Jonathan W. Hoyle, page 5/18

4a. Visual C++ Macintosh Cross-Compiler by Microsoft (1995-1997)
http://msdn.microsoft.com/archive/default.asp?url=/archive/en-us/dnarvc/html/msdn_mfcmac.asp
For a brief time during the mid-1990’s, Microsoft weighed in on Macintosh development by essentially
porting MFC to the Mac. Within very specific limitations, a developer could create an MFC application
for Windows and then cross-compile it for the Mac with this product. There were, however, several
severe failings which eventually doomed this product from the start:

1. It was Windows NT-hosted. This is a major disadvantage to overcome, as most Mac developers
prefer to work on the Mac. (Even Microsoft's defunct QuickBasic for the Mac was Mac-hosted.)
Moreover, this required remote debugging for the Macintosh on Windows.

2. This was not a stand-alone compiler but an add-on to the Windows tools. Once principal
development in Visual C++ began, the project was then cross-compiled with the add-on.

3. Not all of MFC functionality was ported, so NOT_IMPLEMENTED errors occurred frequently.
4. When it was first released, around the time the first PowerMac’s were being introduced, it was

68K only. By the time Microsoft did include a PowerPC compiler with their tools with version 4,
it was too late, as Metrowerks CodeWarrior had taken the Mac compiler market by storm.

5. It created notoriously slow and clunky apps. Microsoft Word 6 was the best example of that, with
such poor performance that many Mac users stayed with version 5.1 and refused to upgrade.

6. It was obscenely expensive, costing $1999. And that was just for the add-on; you still had to
plunk down the initial $495 for the standard Visual C++ compiler.

By 1996, Microsoft discontinued any further development on their Macintosh cross-compiler. They
slashed the price to $199 to clear out remaining inventory. Microsoft has not produced Macintosh
development tools since.

4b. Yellow Box for Windows by Apple Computer (1997-1998)
http://internetnews.com/dev-news/article.php/51871
At the 1997 Apple Worldwide Developer's Conference, Apple announced its plans for a new operating
system: Rhapsody (a port of NeXTStep to the Macintosh). To take advantage of this new OS, it was
required of developers to rewrite their Macintosh applications from scratch, using a new API called
Yellow Box (essentially NeXT's old Objective C-based OpenStep API). Yellow Box applications would
not only run natively on Rhapsody, but they could be easily recompiled to run on Yellow Box for

ADHOC/MacHack 20, 2005

Jonathan W. Hoyle, page 6/18

Windows, a set of libraries that ran the Yellow Box API on various flavors of Windowsi. However, the
requirement for developers to rewrite all their applications from scratch proved to be too much, and the
Mac community rejected this new approach. The following year, Apple changed course once again by
announcing Mac OS X (a merger of Rhapsody technology with the original Mac OS) and introduced
another native (but more transitional) API called Carbon. Rhapsody's Yellow Box lives on today as the
Cocoa API for Mac OS X.

What was lost was Yellow Box for Windows. As flawed as the Rhapsody initiative was in 1997, it did
provide an Apple-sponsored cross-platform framework. The promise of writing to a single API to create
native apps on both the Mac and Windows was one of the few bright spots that year. Armed with a
prerelease CD of Rhapsody and ProjectBuilder for Intel, many developers were excited by the prospect of
creating these new cross-platform applications. Unfortunately it was never to be, as Yellow Box for
Windows was cancelled by Apple.

4c. Mac2Win by Altura Software (1990-present)
http://www.altura.ro/Mac2Win/mac2win_frame.htm
Essentially, Mac2Win is a port of the original Mac OS API to Windows. By adding the Mac2Win
libraries with your project, your application can be compiled and run on Windows. The appeal of this for
the Macintosh developer was that he could develop his project in the standard Mac Toolbox and compile
for Windows without a large rewrite. Unfortunately, only about 80% of the System 7 Toolbox was
ported. And of the functions that were supported, many behaved differently on Windows than on the
Mac, requiring extensive debugging.

More recently, a minimal set Carbon calls have been ported to allow Mac2Win based applications to be
Carbonized. Unfortunately, these do not include many modern API’s like Carbon Events. Although
technically still alive as a product, it is not adequate for modern development. Mac2Win remains an
expensive, royalty-based product, well outside the price range of the small developer. However, many
well-known Macintosh applications got their initial Windows ports via Mac2Winj, including Claris
Works, Macromedia Director,9 4th Dimension10 and Metrowerks CodeWarrior11.

4d. PowerPlant for Windows by Metrowerks (2002-2004)
http://web.archive.org/web/20040207055356/www.metrowerks.com/MW/Develop/Desktop/PowerPlant.htm
Not long after CodeWarrior took the Macintosh development world by storm, its PowerPlant framework
was quickly embraced due to its smooth design and usability. As CodeWarrior had been including a
Win32 compiler, it did not take long before developers started requesting a Windows version of

i Yellow Box for Windows was initially supposed to be freely deliverable but was later priced at $249 per end user install.
j It is rather easy to determine where it is used: pressing Alt-U-R-A in a Mac2Win-ported application will bring up the Altura
Secret About Box, giving the copyright date and Mac2Win version.

ADHOC/MacHack 20, 2005

Jonathan W. Hoyle, page 7/18

PowerPlant, thereby facilitating cross-platform developing. For years however, Metrowerks insisted that
PowerPlant was a Mac-only framework, and there would never be a PowerPlant for Windows11. That
was until Metrowerks purchased the Latitude Porting technology; by 2001, Metrowerks was finally ready
to introduce PowerPlant for Windows.

PowerPlant for Windows seemed to get underway with a strong start when it was publicly embraced by
Adobe12. The appeal was quite obvious to the Mac developer: use the PowerPlant framework (already the
dominant one on the Mac), and with this library you get a Windows port as well. It was exactly what
Macintosh developers had been begging for since CodeWarrior was first introduced. However, greed
killed the initiative. At first launch, PowerPlant for Windows cost anywhere from $20,000 to $50,000.
By early 2003, Metrowerks dropped the price to $15,000 plus 1% of the total product sales above $1.5
million, capping at a maximum of $150,000. Clearly not for the faint of heart. This price structure
strangled any hope of survival for this product. Unlike Visual C++ and Mac2Win, Metrowerks never
bothered to drop the price to a reasonable range before killing it, which they finally did in early 2004.

5. Modern Cross-Platform Frameworks
As a simple Google search will show, there exist a large number of cross-platform frameworks available
for the C++ programmer. However, these frameworks will vary in degrees of quality, price and
Macintosh usability. Due to the limitations of a single paper, it is not possible to look at every cross-
platform framework that exists. Therefore, this list should be considered as only a starting point for
investigating possible solutions.

5a. CPLAT II by ksoft
URL: http://www.ksoft.net/cp_home.htm
Cost: $50
Platforms: Mac OS X, Mac OS Classic, Windows, (Linux under development)
Supported Compilers: CodeWarrior (Mac & Win), Xcode, Visual C++
Mac OS X on Intel Support: Upcoming release, expected August 2005

CPLAT, which compares very favorably to the others, is an amazing achievement by Ken Stahlman, the
creator this framework. CPLAT is a low-cost cross-platform framework supporting Mac OS 9, Mac OS
X and Windows, with Linux still under development. For a mere $50, this C++ application framework is
powerful and very reminiscent of PowerPlant, giving a good Macintosh user experience. One of the
problems with some other cross-platform frameworks is that Macintosh support tends to be secondary.
This is not the case with CPLAT, as it clearly has the Macintosh as the primary platform in mind.

The current version as of this writing is CPLAT II (a complete rewrite of CPLAT I) and will compile on
CodeWarrior 8.x and 9.x for both Macintosh and Windows; Xcode for the Mac and Visual C++ for
Windows are also supported. One nice aspect of CPLAT is its ability to work with .nib files created from
Interface Builder. Once the GUI has been generated with Interface Builder, the resulting .nib files can be
converted into XML via the CP_NibToXML tool provided with CPLAT. The resulting XML can then be
used to generate CPLAT GUI for Mac, Windows and even Linux. Macintosh applications created by
CPLAT can be compiled for either CFM or Mach-O, and will run on Mac OS X 10.2 or higher (Classic is
supported on OS 9 via CarbonLib). Windows applications will run on 98, 2000 or XP.

ADHOC/MacHack 20, 2005

Jonathan W. Hoyle, page 8/18

Figure 1a: A CPLAT dialog on Mac OS X 10.3 Panther

Figure 1b: The same CPLAT dialog in Windows 2000

Recommendation: The main negative to CPLAT is that kSoft is a one-man operation, and thus CPLAT
support is subject to Ken Stahlman's efforts to keep it current. Support, however, has always been one of
CPLAT's strong suits, and it isn't likely to end soon, as Ken has promised to update CPLAT for Intel-
based Macs. CPLAT may not be as sophisticated (or as expensive) as Qt, but it is a top contender to
consider for a cross-platform project. Although it’s not free like wxWidgets, its relatively low price of
$50 makes it very reasonable. If your background is PowerPlant development with CodeWarrior and you
would like to begin cross-platform development, CPLAT is likely to be your most comfortable fit.

ADHOC/MacHack 20, 2005

Jonathan W. Hoyle, page 9/18

5b. wxWidgets (formerly wxWindows)
URL: http://www.wxwidgets.org
Cost: Free (Open Source)
Platforms: Mac OS X, Mac OS Classic, Windows, Linux
Supported Compilers: CodeWarrior (Mac only), Xcode, Visual C++, Borland C++, others
Mac OS X on Intel Support: Upcoming release, version 2.6.2

Due to a name change motivated by a frivolous lawsuit from Microsoft13, wxWidgets remains a popular
cross-platform framework. wxWidgets is Open Source and has a very large community of supporters. It
also has one of the largest number of platforms supported: Mac OS 9/X, Win16, Win32, Win64, Linux
x86, Solaris, AIX, HP-UX, Irix, SCO Unix, FreeBSD, OpenVMS, and even OS/2k. Additionally, there is
an initiative to port to to embedded systems, including Windows CE and Palm OS. There is already a
large number of products written with wxWidgets, including AOL Communicatorl. With it being Open
Source, the community will post "bounties", fees for specific bugs they'd like to see fixed.

Figure 2: wxDesigner GUI program for wxWidgets

wxWidgets’ Macintosh support has historically been poor but has been improving recently. The
Macintosh version (called wxMac) supports both Mac OS 9 and X, although the wxMac FAQm states that
the Mac OS X port is still "in progress". Another annoying factor is that the Classic and OS X versions

k For a complete list of wxWidget’s supported platforms, go to: http://www.wxwidgets.org/platform.htm
l For a list of other applications created by wxWidgets, go to: http://www.wxwidgets.org/users.htm
m http://www.wxwidgets.org/faqmac.htm

ADHOC/MacHack 20, 2005

Jonathan W. Hoyle, page 10/18

are separate codebases. The wxMac FAQ appears to be out of sync with other parts of the website, as it
states that the compilers it supports for Classic are CodeWarrior Pro 5.3 and 6, and for OS X
CodeWarrior Pro 6 and Xcode; yet elsewhere it says that the supported compilers are CodeWarrior 8.3 for
Classic and Xcode for OS X. This kind of synchronicity error is not uncommon for Open Source
projects, but it is particularly noticeable for wxWidget’s Macintosh support. There are several
commercial GUI generators compatible with wxWidgets, including wxDesignern and DialogBlockso, but
there is no ability to integrate with Interface Builder.

Recommendation: wxWidgets has an awkward feel from a Macintosh user’s perspective, reminiscent of
MFC, and not as smooth as the inexpensive CPLAT. It does however continue to improve with time,
particularly due to growing support from the Open Source community. It is free and functional, with no
limitations on commercial development, which is not true of either CPLAT or Qt. For developing
freeware, the Open Source version of Qt edges it out with superior Mac OS X capabilities. But if it’s a
free cross-platform framework you desire for general purpose development, wxWidgets is not only the
best game in town, it’s essentially the only one.

5c. Qt by Trolltech
URL: http://www.trolltech.com
Cost: Tiered pricingp: $1790 Professional license, $2880 Enterprise license, free for Open Source development
Platforms: Mac OS X, Windows, Linux
Supported Compilers: Xcode, Visual C++, gcc
Mac OS X on Intel Support: Unknown as of this writing

Qt is arguably the most powerful cross-platform framework available today. Although Trolltech arrived a
bit late to the Macintosh party (primarily deploying Windows and Unix), the introduction of Mac OS X
inspired Trolltech to introduce an impressive Macintosh porting product. Without the burden of
supporting Classic, Qt is a very modern and up-to-date framework. It weighs in at about 400 C++ classes,
covering simple dialogs, controls, sophisticated OpenGL classes, database connectivity and more.
Unfortunately, some of these powerful features are available only in the more expensive Enterprise
edition. Included with the cheaper Professional license are RAD-like tools, such as QtDesigner for
creating GUI's and QtLinguist for localization. The documentation is also very impressive, with a
separate tool called QtAssistant which manages it nicely. The KDE environment for Linux was written
with Qt14 as were the Mac OS X versions of KOffice15 and PostgreSQL GUI Client16.

n http://www.roebling.de/
o http://www.anthemion.co.uk/dialogblocks/
p Qt pricing shown above is for a single developer; Trolltech’s pricing scheme discounts in groups of two or three developers.
For detailed pricing information, go to: http://www.trolltech.com/products/qt/pricing.html .

ADHOC/MacHack 20, 2005

Jonathan W. Hoyle, page 11/18

Figure 3: QtDesigner for building GUI's

In addition to the Professional and Enterprise editions, there is also an Open Source version of Qt free to
download, and it is provided under the GNU General Public License. This means that you cannot
commercially sell any application built with Qt/Open Source; furthermore, the license requires you to
provide source code with every application distributed. Trolltech was wise in creating an Open Source
edition as it becomes a vehicle to entice developers into using Qt: once a developer learns the framework
for his own freeware project, he can then recommend it to his employer for commercial development.

Figure 4: Graphical examples created by Qt

ADHOC/MacHack 20, 2005

Jonathan W. Hoyle, page 12/18

For more detailed information on using Qt, read Scott Collins’ Cross-Platform Development with Qt also
published at AdHoc/MacHack 200517.

Recommendation: As impressive and powerful as Qt is, its pricing is daunting and would place it outside
the reach of the private developer. Although it is an excellent solution for Open Source development, it is
an expensive route for commercial development. It also shows its Windows and Linux heritage, as the
Mac OS X port still feels more like an afterthought. For example, there is no facility to work with .nib
files created by Interface Builder, to which a Macintosh developer would be accustomed.

5d. Other Cross-Platform Frameworks
There are a number of cross-platform frameworks (many of which are free), and they are of varying levels
of Macintosh support. As it is beyond the scope of this paper to evaluate them, they are listed below so
that others may continue the investigation:

1. CroPL II (Cross-Platform Library): http://www.crystalfiresw.com/products/cropl.html
2. YAAF (Yet Another Application Framework): http://www.yaaf.org
3. FLTK (Fast Light Toolkit): http://www.fltk.org
4. Whisper: http://www.sourceforge.net/projects/whisper2
5. ZooLib: http://zoolib.sourceforge.net

6. REALbasic with a C/C++ Dynamic Library
URL: http://www.realbasic.com
Cost: $99 Standard Edition per platform, $399 Professional Edition
Platforms: Mac OS X, Windows, Linux
Mac OS X on Intel Support: Upcoming release

One of the deficiencies of many of the aforementioned cross-platform frameworks is that they lack the
RAD capabilities available to those using Interface Builder, Apple's design tool for GUI's. .nib files
created from Interface Builder have a dynamic nature to them, allowing you to make changes without
requiring a complete regeneration of the associated code. What would be desirable is a cross-platform
equivalent to Interface Builder for rapid application GUI development.

This is precisely what REALbasic offers. REALbasic is an application development environment very
similar to Visual Basic, except that it can compile for the Macintosh and Linux as well as for Windows.
The GUI design portion of REALbasic is one of the most intuitive and powerful RAD tools available.
Those familiar with VB would feel right at home with it; those familiar with Interface Builder will find it
straight forward and easy to work with. And because it's the Basic programming language, it is not very
difficult to learn.

How is this useful to the C/C++ programmer? Since REALbasic has the ability to call functions written
in C and C++, the GUI can be easily generated, while the remainder of core functionality can still be
written in C. REALbasic can essentially be viewed as a cross-platform version of Interface Builder.
Architecting with MVC, REALbasic can easily create views need for your C++ model.

ADHOC/MacHack 20, 2005

Jonathan W. Hoyle, page 13/18

6a. Creating the REALbasic GUI
Those familiar with Microsoft Visual Basic for Windows will find REALbasic trivial to learn. Dragging
and dropping GUI elements is straightforward, similar to Interface Builder. Double-clicking on any such
element will take you to its instance methods where you can override or replace default functionality.
Support ranges from standard controls to QuickTime movies and OpenGL. For additional functionality,
there are a large number of REALbasic plugins, adding to the already impressive list of objects available.
REALbasic documentation is fairly good, but there are still a number of behavioral holes which require a
trip to the news:comp.lang.basic.realbasic newsgroup.

For more information on REALbasic, I recommend trying the demo version of the product by
downloading it from their web site at http://www.realbasic.com .

Figure 5: Designing GUI with REALbasic 2005

Note that beginning with REALbasic 2005, the designing GUI tool has changed to an all-in-one window
format, similar to that found in Visual C++ and other Windows IDE’s. Versions 5.5 and earlier used a
more Mac-like multiple window paradigm, similar to Metrowerks CodeWarrior.

6b. Creating the C++ Library
Once you have created the Model classes for your application, they need to be bundled into a dynamic
library which will export your Controller functions. Note that only those pieces of your C++ model code
that interface with the GUI will need to be exported; once control has been passed in from the REALbasic
application into the C++ library, the remaining portions of your model are available to you.

On Windows, the dynamic library type is called a DLL (Dynamic Linked Library and can be made with
any number of compilers, such as Visual C++ and CodeWarrior for Windows. On the Macintosh, there

ADHOC/MacHack 20, 2005

Jonathan W. Hoyle, page 14/18

are two types of libraries which can be used: CFM/PEF-based (called a Shared Library) and Mach-O
based (called a dylib). Shared Libraries can be used with either Classic or Carbon/CFM-based
applications. If you wish to have your REALbasic application run in both Mac OS 9 and Mac OS X,
encase your model inside a Carbon Shared Library built with Metrowerks CodeWarrior. If your
REALbasic application is built as Mach-O, you must instead house your functions inside a Mach-O dylib,
which you can build with either CodeWarrior or Xcodeq. If you wish to have your C++ implementation
to be 64-bit compatible, you will need to use Xcode. In general, Carbon/PEF libraries are far easier to
work with and are much less fragile to work with. Jonathan Johnson has written an excellent article on
creating Mach-O dylibs with Xcode and using it in a REALbasic application18.

To avoid C++ name-mangling issues, we will export our model code as a library of C functions, using the
extern "C" declarationr. Your standalone utility functions will just need a simple wrapping and you
are done. For C++ classes and methods, mapping them to C equivalents can be done in a straight forward
manner, such as using the ClassName_MethodName form. The implicit this pointer must also be
passed in, which for us will be treated as an opaque handle.

6c. An Example: The C++ Code
Below is an example of sample code in the C++ library. The class name is MyModel containing a
constructor, destructor and two methods foo and bar . We then create C-wrappers for them:

// A C++ model class used in the library's implementation
class MyModel
{
 public:
 MyModel();
 virtual ~MyModel();
 void foo(int parm1, double parm2);
 int bar(const char *parm);
};

// Exported functions associated with the MyModel class
#ifdef __MACH__
 #define export
#else
 #define export __declspec(dllexport)
#endif

extern "C"
{
 export int MyModel_Create();
 export void MyModel_Destroy(int modelHdl);
 export void MyModel_Foo(int modelHdl, int parm1, double parm2);
 export int MyModel_Bar(int modelHdl, const char *parm);
}

q Mach-O dylibs can also be accessed by CFM applications built with REALbasic 2005 using Soft Declares.
r If you know your compiler's decoration mechanism for C++ name mangling, you can bypass the extern C-wrapping and call
C++ methods directly. However, the decorations can make code look really ugly: instead of calling MyModel_foo , you
would be calling something looking like ?foo@MyModel@@QAEHHH@Z:NEAR . Worse still, name mangling differs from
compiler to compiler (and from version to version within a compiler), so you will not be able to call these mangled function
names in a platform-independent way. For these reasons, using extern C-wrappers makes life much easier.

ADHOC/MacHack 20, 2005

Jonathan W. Hoyle, page 15/18

// Exported function implementations
int MyModel_Create()
{ return (int) new MyModel; }

void MyModel_Destroy(int modelHdl)
{ delete ((MyModel *) modelHdl); }

void MyModel_Foo(int modelHdl, int parm1, double parm2)
{ ((MyModel *) modelHdl)->foo(parm1, parm2); }

int MyModel_Bar(int modelHdl, const char *parm)
{ return ((MyModel *) modelHdl)->bar(parm); }

Most C++ methods will be able to be thunked down to C in this fashion. You can see from the example
above that we used the int type to hold our class pointer, so we are assuming a 32-bit library for this
particular examples. Our REALbasic application will treat modelHdl as an opaque reference and not
be concerned with the fact that it is a pointer to memory.

The __declspec(dllexport) directive before the function declarations is required for PEF and
Win32 libraries. It tells the compiler that these method names are available to callers of the library.
Functions without this declaration are not exported. Mach-O libraries, on the other hand, export every
non-static function by default, so no __declspec(dllexport) directive is needed.t

6d. An Example: The REALbasic Code
Once you have your functions exported from the dynamic library, they are now available to be called by
your REALbasic application. At the top of a REALbasic method in which you call a library routine, you
must Declare the exported function before using it. If our exported C function were of the form:

extern “C” ReturnType FcnName(pType parm, ...);

then the REALbasic declaration must be of the form:

Declare Function FcnName lib LibName(parm as pType, ...) as ReturnType

If ReturnType is void , then the word Function is replaced with Sub and as ReturnType is
dropped. For Mach-O, LibName is a complete pathname to the dylib, which can be relative to the Unix
executable (note that the Unix executable live two levels beneath the app's bundle). For non-Mach-O
targets, just the library name will do if the library is in the same path as the application. REALbasic
source code for a lib may look like this:

#if TargetCarbon
 const ModelLib = "MyModel Library"
#endif
#if TargetMachO
 const ModelLib = "@executable_path/../../../libMyModel.dylib"
#endif

s The simplicity of using a 32-bit integer to house a pointer as our opaque handle is just for ease of demonstration. If a 64-bit
compatibility is desired, a better mechanism would need to be implemented.
t This sample code assumes that you are interfacing with REALbasic 5.5 or higher. REALbasic for Windows version 5.2 and
earlier could not import declspec functions from DLL's. For these earlier versions of REALbasic, exported library functions
had to be declared as __stdcall and their names be listed in a separate .def file.

ADHOC/MacHack 20, 2005

Jonathan W. Hoyle, page 16/18

#if TargetWin32
 const ModelLib = "MyModel.dll"
#endif
#if TargetLinux
 const ModelLib = "libMyModel.so"
#endif

Declare Function MyModel_Create lib ModelLib() as integer
Declare Sub MyModel_Destroy lib ModelLib(modelHdl as integer)
Declare Sub MyModel_Foo lib ModelLib(modelHdl as integer,
 parm1 as integer, parm2 as double)
Declare Function MyModel_Bar lib ModelLib(modelHdl as integer,
 parm as Cstring) as integer

Dim modelHandle as integer
Dim barValue as integer

modelHandle = MyModel_Create()
MyModel_Foo(modelHandle, 12, 3.0)
barValue = MyModel_Bar(modelHandle, "Hello, World")
MyModel_Destroy(modelHandle)

return barValue

For some downloadable sample projects, check out http://www.jonhoyle.com/MacHack/ .

Recommendation: REALbasic’s claim that it is “cross-platform that really works” is only partially true:
the $99 Standard Edition compiles for only a single platform, and you must purchase a separate copy for
each platform you wish to support. The $399 Professional Edition does however allow you to cross-
compile to each of the other platforms. Moreover, the Professional Edition offers extended databasing
capabilities, the creation of console applications on most platforms, etc. For this reason, the Professional
version of REALbasic is recommended for advanced development. Overall, REALbasic is the simplest,
most powerful way of creating cross-platform applications.

7. Five Rules for a Successful Cross-Platform Project
Regardless of which cross-platform approach is taken, a project can be quickly undermined by a poor
process. Through experience, I have learned a number of simple principles, which if followed, will help
you avoid the pitfalls that many cross-platform projects fall into.

1. Design your application with a Model-View-Controller (MVC) architecture. This is perhaps the
single best key to success in any cross-platform project.

2. Have both Mac & Windows developers working together from the start. If you are serious about
being cross-platform, you need to have the expertise of both engineering groups early in the
design and implementationu.

u This important lesson was lost on a development team I had worked with in 1999. The project was a properly MVC layered
application with the model written as a C++ DLL and the view being a Java Swing application via JNI, all written in
CodeWarrior for both Mac OS & Windows. Sounds good so far, right? Well, the Windows team developed first and handed it
off to the Macintosh team afterwards, which they found out only later that the application was written to the Java 2 specification
(which was not supported on the Mac at that time). Worse still, the source filenames themselves exceeded the 31 character
limitation of the Finder, so project files would not compile due to broken #include’s. Management decided to split the project
into separate Windows and Macintosh branches, each of which remained laden with the weight of an unused cross-platform
design. All this waste could have been avoided had there simply been Mac developers advising the team from the start.

ADHOC/MacHack 20, 2005

Jonathan W. Hoyle, page 17/18

3. Use a single code branch for source control. Separate code branches often have the undesirable
effect of spinning out of sync very quicklyv. Use #ifdef’s when you need to do something
platform-specific within your codebase.

4. Write ANSI-compliant C and C++ code, using standardized ANSI and STL libraries. Since many
cross-platform projects use multiple compilers, it is important to minimize the errors and
warnings that may crop up on the other platform. To further this, make it a point to turn the
warning level high and require all checked in code have no warnings.

5. Put both a Mac and a PC onto each of your developers’ desks. There will be times when a
developer on one platform will want to see how his code has affected the other platform. If the
developer does not have easy access to the other machine, it makes it more likely that check-in's
will break on the other platform.

8. Summary
There are essentially three modern cross-platform frameworks available to the C++ programmer today
which support Mac OS X and Windows: CPLAT II, wxWidgets and Qt:

• CPLAT wins for being the most Macintosh-friendly. Those accustomed to developing with
PowerPlant on the Macintosh will find it a familiar feel; for a mere $50, CPLAT is an excellent
value and will likely serve most all of your needs for crossplatform development.

• With no cost or development restrictions at all, wxWidgets is a cross-platform framework which
is Open Source. Although it acquits itself adequately for the Macintosh development, it has an
MFC/Windows feel to it.

• At the high end, Qt is certainly the most powerful framework but it’s also the most expensive.
Lacking Classic support, Qt is able to embrace Mac OS X fully without the legacy of backward
compatibility. Although producing superb results, it is priced outside the range of the individual
developer; the GNU version however is free for developing Open Source products.

As an alternative to heavy frameworks with a new API, architecting software using MVC allows the
developer the flexibility of using more modern RAD tools. By housing your data model inside of a
C/C++ dynamic library, many GUI tools become available for the View. Arguably the easiest and most
powerful of these is REALbasic, which can generate Macintosh, Windows and Linux GUIs all from the
same project file, which in the end is this author’s recommendation.

For more information, check for updates at http://www.jonhoyle.com/MacHack/ .

Further Reading
REALbasic:

1. REALbasic, the Definitive Guide, 2nd Edition, M. Neuburg, 2001, ISBN: 0596001770
2. REALbasic for Macintosh, M. Swaine, 2002, ISBN: 0201781220
3. REALbasic for Dummies, E. Tejkowski, 2001, ISBN: 0764507931
4. Learning REALbasic through Applications, C. Clayton, 2002, ISBN: 1584502061

Qt:
1. C++ GUI Programming with Qt 3, J. Blanchette et al, 2004, ISBN: 0131240722
2. Programming with Qt, M. Dalheimer, 2002, ISBN: 0596000642
3. Teach Yourself Qt Programming in 24 Hours, D. Solin, 2000, ISBN: 0672318695

v On a project I once led, management made the decision to branch the code so that the Mac version could be released sooner.
Although a few months were saved in doing so, the cost was a year and a half before for two branches to be remerged.

ADHOC/MacHack 20, 2005

Jonathan W. Hoyle, page 18/18

wxWidgets:
1. Cross-Platform GUI Programming with wxWidgets, J. Smart et al, 2005, ISBN: 0131473816

Metrowerks CodeWarrior:
1. Metrowerks CodeWarrior Professional Book, D. Sydow, 1997, ISBN: 1566047331
2. CodeWarrior Software Development Using PowerPlant, J. Harrington, 1999, ISBN: 0123264227
3. Metrowerks CodeWarrior Programming, 2nd Edition, D. Sydow, 1996, ISBN: 1558515054
4. C++ Programming with CodeWarrior, J. Harrington, 1995, ISBN: 0123264200
5. Mastering CodeWarrior for Windows 95/NT, J. Trudeau, 1997, ISBN: 0782120571

Xcode:
1. The Mac Xcode 2 Book, D. Cohen et al, 2005, ISBN: 0764584111
2. Step into Xcode, F. Anderson, 2005, ISBN: 0321334221

Bibliography

1 DrPizza, Microsoft .Net. Ars Technica, 2/02 < http://arstechnica.com/paedia/n/net/net-4.html >
2 Armstrong, E. and J. Niccolai. Sun Granted Injunction Against Microsoft. JavaWorld December 1998
< http://www.javaworld.com/javaworld/jw-12-1998/jw-12-injunction.html >
3 Tyler, M. CodeWarrior Development Studio 9. MacAddict Mar 2004 <
http://www.macaddict.com/issues/0403/rev.codewarrior.html >
4 D. Sellers, Be Careful of the Bridges You Burn. Macsimum New, 6/17/05 <
http://www.macsimumnews.com/index.php/archive/5416/ >
5 Fried, I. Intel Deal May Mean End to OS 9 Support. ZDNet News 6/6/05 < http://news.zdnet.com/2100-
1040_22-5734410.html >
6 Model-View-Controller. Wikipedia 7/1/05 < http://en.wikipedia.org/wiki/MVC >
7 Apple Computers, The Model-View-Controller Design Pattern. Apple Developer Connection 5/27/04
< http://developer.apple.com/documentation/Cocoa/Conceptual/AppArchitecture/Concepts/MVC.html >
8 Microsoft Corporation. Model-View-Controller, MSDN Library <
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnpatterns/html/DesMVC.asp >
9 Winer, D. Quorum and Altura. 1/27/97 < http://davenet.scripting.com/discuss/msgReader$300 >
10 4th Dimension Consulting, 4th Dimension XML Keys, < http://www.4d-
consulting.com/Manuals/4D_DOC_HTML_2004/XML_Keys_US/000_Legal_Title.html >
11 Mark, D. From the Factory Floor (Interview with Greg Dow). MacTech Apr 1996 <
http://www.mactech.com/articles/mactech/Vol.12/12.04/Apr96FactoryFloor/ >
12 Adobe Uses Metrowerks for Mac/Windows Transfer. Austin Business Journal, 2/7/02 <
http://www.bizjournals.com/austin/stories/2002/01/07/daily3.html >
13 Loli-Queru, E. Microsoft Intervention Pushes wxWindows to become wxWidgets. OS News 2/20/04 <
http://www.osnews.com/story.php?news_id=6100 >
14 Dalheimer, M. Programming with Qt, 2nd Edition, O’Reilly & Associates, 2/02
15 Turner, D. ‘Grunt Work’ Brings Early Version of KOffice to Mac OS X, eWeek, 1/5/04 <
http://www.eweek.com/article2/0,,1426578,00.asp >
16 OpenRPT – Open source GUI Report Writer and Renderer for PostgreSQL, PostgreSQL News,
4/26/05 < http://www.postgresql.org/about/news.314 >
17 Collins, S. Cross-Platform Developent with Qt. AdHoc/MacHack 7/05
18 Johnson, J. Creating a DyLib on Mac OS X and Declaring into it. NilObject 2/27/05 <
http://www.nilobject.com/?p=184 >

