ounter—intuitive results from

e field of the Hyper-reals
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Introduction @

* Inspired from the paper Infinitesimals in Modern
Mathematics presented in last Fall’s Seaway meeting

 Some repeat information, some new information
 The Hyperreals *R is an enlargement of R

 *R contains both infinite and infinitesimal values

* Very similar and very dissimilar properties

 Some find proofs of *R more intuitive than those of R
* Paper & slides available to view and download at

http://www.jonhovle.com/MAASem
~

e Email: jonhoyle@macieom




Outline

e Construct *R out of R®
 Add a Hyperreal Equivalence Relation

* Look at interesting properties:

Conclusion

Infinities & infinitesimals

Halos and Unique Shadows

The Transfer Principle
Countability & Hyper-Countability
Dedekind Incompleteness
Nonstandard Proofs




Construction of *R j@

* Begin with R*, the set of ordered sequences of R:
<0101, ..>
<235 711, .. >
<-1,m 0.0001, 109,17, ... >

* |dentify the reals as a subset,eg:3=<3, 3, 3, ... >

e Define arithmetic and extended functions:
atb=<a,+bya,+b,a,+b, ..>

axb=<a,xbya, b, a, xb, ..>

a+b=<a,+bya,+b,a,=b,,...> ~
b — bo o4.b1 b2 g4.b S \
a- = < aO 0) a] ]y aZ 2) a3 3} Y S

f(a) = < f(ay), f(ay), f(az),f(as)xg




Hyperreal Equivalence Relation @

* Divide all subsets of N into “large” and “small’:
— All finite subsets of N being small
— All cofinite subsets of N being large
— Complement of a large set is small, and vice-versa
* <aya, ..>=<by,b, ..>holds when the
agreement set <a,=b, a, =b,, ... > islarge
e Using a non-principal ultrafilter on N, we can define
an equivalence relation satisfying our /large and small

 *Ris the set of equivalence classes over R®
e *Ris a totally ordered field ;\\(

»




Infinities Both Great & Smalli j@

* Ordered: x <y whentheset {i|x; <y, } holds true for
a large set of indices

e letw=<123, ...>

* Weseethatw > n, foralln e N

 Thus w is an infinite element of *N

* Orders of infinity: o, ®?, %, w®", ... etc.
e lete=llw=<1 % % Y%, ...>

* Weseethate <y forallr e R*

* Thus, ¢is an infinitesimal \

* Orders of the mﬂmtely%all e elc




Halos & Unique Shadows @

Forx, y € *R, if x — y is an infinitesimal, we say that x
is infinitely close to y, written x = y. Eg: w® < I

The set of all hyperreals infinitely close to x is called
the halo of x, denoted hal(x). Eg: 1 = hal(0).

The set of hyperreals a finite distance from x is called
the galaxy of x, denoted gal(x). Eg: R C gal(0).

Every finite hyperreal x is infinitely close to exactly
one standard real . ris called the shadow of x.

Any finite hyperreal x can be expressed asx =r + i,

>
ris called the standard part of x.

where r € R and i is an infinitesimal: \

«sthe nonstandard part of x.




Topological View

* We think of R (very sloppily) as series of points:

€—0—0—0—0—0—0—0 000000 00 00—

e Equally as sloppily, we can think of *R as series of
non-overlapping open intervals:

——He e He He HeHe e ——




The Transfer Principle @

* Analytic study of *R is called Nonstandard Analysis.

* Transfer Principle: First order statements about R can
be reinterpreted as first order statements about *R.

* This reinterpretation involves modifying the
statements with the *-transformation.

* For example, in standard analysis, the true statement:
Vx,AneN>3n>x

is false in NSA. However, it is true when *-transformed:

Vx,dn e *N3:n>x




Countability & Hyper-Countability @

* From standard analysis, [N| =|Q|= X, < |R|=C.

* From Transfer, we might therefore expect |*N| < |*R].
* However, |*N|=[*Q|=|*R|=C.

* Infinite subsets of *R of cardinality < € are external.
 There are no countably infinite hyper-ordinals.

* Every infinite hyper-integer is uncountable!
* Aninfinite set is called hyper-countable if it has an

internal 1-1 correspondence with *N:  ~
SR - *N and *Q are hypei;;ountazlk

5
*R is hyper-uncountable.




Dedekind Incompleteness @

* Unlike R, *R is Dedekind Incomplete (has “holes” in it)

* Let the set function S : @?(*N) — *R be defined as:
S0 =3, Vo

* We seethat: S(©)=0, S({0,1})= 1%, S(*N) =2, etc.

* Now suppose do € *R 3: ¢ = S(N).

* Wehaveo>x, Vx€hal(y), VyeR <2

* But 0 <x, Vxe&hall2).

e Since every hyperreal has a unigue shad g & *R.
L4Any attempt to “complete” *R b)z\gdmgm;h

will simply result in a field isomorphic to R.




Proofs from Nonstandard Analysis @

 Nonstandard proofs tend to be smaller and more
intuitive than their equivalent standard ones

e Standard definition of continuity:

A function f'1s continuous at x, if

Ve>0,30>03: [x—x)| <d = |f(x) —flx))] <&
* Nonstandard definition of continuity:

A function f 1s continuous at x,1f x =x, = f(x) = f(x,)
* The paper Infinitesimals in Modern Mathematics
demonstrates two examples of p_rqofs, \
comparing their standard and noa&",t»andard versions.

()
| :
O




Conclusion @

 *R is an extension of R containing both infinite and
infinitesimal values

* *Ris a necessarily incomplete ordered field

* With the Transfer Principle, classical proofs can be
rewritten to be more accessible and intuitive.

e Qutside the Transfer Principle, other new and
interesting results from external sets.

* Many exciting research opportunities exist for those

wishing to learn Nonstandard Analysis
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For more information... j@

Copies of the paper and slides available at:

http://www.jonhoyle.com/MAASeaway







