

Jonathan W. Hoyle, III

Mathematical Association of America Seaway Section Meeting Syracuse University 4/12/08

Introduction

- Inspired from the paper *Infinitesimals in Modern Mathematics* presented in last Fall's Seaway meeting
- Some repeat information, some new information
- The Hyperreals *R is an enlargement of R
- *R contains both infinite and infinitesimal values
- Very similar and very dissimilar properties
- Some find proofs of *R more intuitive than those of R
- Paper & slides available to view and download at

http://www.jonhoyle.com/MAASeaway

Email: jonhoyle@mac.com

Outline

- Construct * \mathbf{R} out of \mathbf{R}^{∞}
- Add a Hyperreal Equivalence Relation
- Look at interesting properties:
 - Infinities & infinitesimals
 - Halos and Unique Shadows
 - The Transfer Principle
 - Countability & Hyper-Countability
 - Dedekind Incompleteness
 - Nonstandard Proofs
- Conclusion

Q & A

Construction of *R

• Begin with \mathbf{R}^{∞} , the set of ordered sequences of \mathbf{R} :

$$< 0, 1, 0, 1, ... >$$

 $< 2, 3, 5, 7, 11, ... >$
 $< -1, \pi, 0.0001, 10^{10}, \sqrt{17}, ... >$

- Identify the reals as a subset, eg: $3 = \langle 3, 3, 3, ... \rangle$
- Define arithmetic and extended functions:

$$\begin{aligned} \mathbf{a} + \mathbf{b} &= < a_0 + b_0, \ a_1 + b_1, \ a_2 + b_2, \ \dots > \\ \mathbf{a} \times \mathbf{b} &= < a_0 \times b_0, \ a_1 \times b_1, \ a_2 \times b_2, \ \dots > \\ \mathbf{a} \div \mathbf{b} &= < a_0 \div b_0, \ a_1 \div b_1, \ a_2 \div b_2, \ \dots > \\ \mathbf{a}^{\mathbf{b}} &= < a_0^{b_0}, \ a_1^{b_1}, \ a_2^{b_2}, \ a_3^{b_3}, \ \dots > \\ \mathbf{f}(\mathbf{a}) &= < f(a_0), \ f(a_1), \ f(a_2), \ f(a_3), \ \dots > \end{aligned}$$

Hyperreal Equivalence Relation

- Divide all subsets of N into "large" and "small":
 - All finite subsets of N being small
 - All cofinite subsets of N being large
 - Complement of a large set is small, and vice-versa
- $< a_0, a_1, ... > = < b_0, b_1, ... >$ holds when the agreement set $< a_0 = b_0, a_1 = b_1, ... >$ is large
- Using a non-principal ultrafilter on N, we can define an equivalence relation satisfying our large and small
- * \mathbf{R} is the set of equivalence classes over \mathbf{R}^{∞}
- ullet ${}^*\mathbf{R}$ is a totally ordered field

Infinities Both Great & Small

- Ordered: $\mathbf{x} < \mathbf{y}$ when the set $\{i \mid x_i < y_i\}$ holds true for a large set of indices
- Let $\omega = < 1, 2, 3, ... >$
- We see that $\omega > n$, for all $n \in \mathbb{N}$
- Thus ω is an infinite element of *N
- Orders of infinity: ω , ω^2 , ω^ω , $\omega^{\omega^{\omega}}$, ... *etc*.
- Let $\varepsilon = \frac{1}{\omega} = < 1$, $\frac{1}{2}$, $\frac{1}{3}$, $\frac{1}{4}$, ... >
- We see that $\varepsilon < r$, for all $r \in \mathbb{R}^+$
- Thus, ε is an infinitesimal
 - Orders of the infinitely small: ε , ε^2 , ε^ω , ... etc.

- For $x, y \in {}^*\mathbf{R}$, if x y is an infinitesimal, we say that x is *infinitely close* to y, written $x \approx y$. Eg: $\omega^{\varepsilon} \approx 1$
- The set of all hyperreals infinitely close to x is called the halo of x, denoted hal(x). Eg: $\mathbf{I} = hal(0)$.
- The set of hyperreals a finite distance from x is called the galaxy of x, denoted gal(x). Eg: $\mathbf{R} \subseteq gal(0)$.
- Every finite hyperreal x is infinitely close to **exactly** one standard real r. r is called the shadow of x.
- Any finite hyperreal x can be expressed as x = r + i, where $r \in \mathbf{R}$ and i is an infinitesimal:

r is called the standard part of x.

i is called the nonstandard part of x.

Topological View

We think of R (very sloppily) as series of points:

• Equally as sloppily, we can think of ${}^*\mathbf{R}$ as series of non-overlapping open intervals:

The Transfer Principle

- Analytic study of *R is called Nonstandard Analysis.
- Transfer Principle: First order statements about **R** can be reinterpreted as first order statements about ***R**.
- This *reinterpretation* involves modifying the statements with the *-transformation.
- For example, in standard analysis, the true statement:

$$\forall x, \exists n \in \mathbb{N} \ni : n > x$$

is false in NSA. However, it is true when *-transformed:

$$\forall x, \exists n \in *N \ni : n > x$$

- *-transformed sets of *R are called internal sets.
 - Remaining sets are called external sets.

Countability & Hyper-Countability

- From standard analysis, $|\mathbf{N}| = |\mathbf{Q}| = \aleph_0 < |\mathbf{R}| = \mathfrak{C}$.
- From Transfer, we might therefore expect |*N| < |*R|.
- However, |*N| = |*Q| = |*R| = C.
- Infinite subsets of * \mathbf{R} of cardinality $< \mathbf{C}$ are external.
- There are no countably infinite hyper-ordinals.
- Every infinite hyper-integer is uncountable!
- An infinite set is called *hyper-countable* if it has an *internal* 1-1 correspondence with *N:
 - *N and *Q are hyper-countable.
 - *R is hyper-uncountable.

Dedekind Incompleteness

- Unlike R, *R is Dedekind Incomplete (has "holes" in it)
- Let the set function $S: \mathscr{P}(*N) \to *R$ be defined as:

$$S(X) = \sum_{n \in X} \frac{1}{2^n}$$

- We see that: $S(\emptyset) = 0$, $S(\{0,1\}) = 1\frac{1}{2}$, S(*N) = 2, etc.
- Now suppose $\exists \sigma \in {}^*\mathbf{R} \ni : \sigma = \mathbf{S}(\mathbf{N}).$
- We have $\sigma > x$, $\forall x \in hal(y)$, $\forall y \in \mathbf{R} < 2$.
- But $\sigma < x$, $\forall x \in hal(2)$.
- Since every hyperreal has a unique shadow: $\sigma \notin {}^*\mathbf{R}$.
- ullet Any attempt to "complete" *f R by adding elements

will simply result in a field isomorphic to R.

Proofs from Nonstandard Analysis

- Nonstandard proofs tend to be smaller and more intuitive than their equivalent standard ones
- Standard definition of continuity:

A function f is continuous at x_0 if $\forall \varepsilon > 0$, $\exists \delta > 0 \ni |x - x_0| < \delta \implies |f(x) - f(x_0)| < \varepsilon$.

Nonstandard definition of continuity:

A function f is *continuous* at x_0 if $x \approx x_0 \implies f(x) \approx f(x_0)$

• The paper *Infinitesimals in Modern Mathematics* demonstrates two examples of proofs,

comparing their standard and nonstandard versions.

Conclusion

- *R is an extension of R containing both infinite and infinitesimal values
- *R is a necessarily incomplete ordered field
- With the *Transfer Principle*, classical proofs can be rewritten to be more accessible and intuitive.
- Outside the Transfer Principle, other new and interesting results from external sets.
- Many exciting research opportunities exist for those wishing to learn Nonstandard Analysis

Further Reading...

Infinitesimal Calculus

James M. Henle and Eugene M. Kleinberg VLADIMIR KANOVEI - MICHAEL REEKEN

Nonstandard Analysis, Axiomatically

Graduate Texts in **Mathematics**

Robert Goldblatt

Lectures on the Hyperreals

An Introduction to Nonstandard Analysis PRINCETON LANDMARKS
IN MATHEMATICS

Abraham Robinson

Non-standard Analysis fartin Vath

Nonstandard Analysis

For more information...

Copies of the paper and slides available at:

http://www.jonhoyle.com/MAASeaway

