Forensic Mathematics and 9/11

Jonathan Hoyle

February 22, 2012

Overview

© Introduction
Q World Trade Center Project

- 9/11 and NYC
- Direct Matching (STR Analysis)
- Kinship Analysis
- Mitochondrial DNA
- SNP's
© Summary
© Q \& A

Introduction

Q My name is Jonathan Hoyle
© Both my Undergraduate (University of Delaware) and Graduate (University of Michigan) studies were in Mathematics with a Computer Science minor
© From 2001-2005, Mathematician and Software Engineer with Gene Codes Corp in Ann Arbor, MI

Q Involved with M-FISys (pronounced "emphasis"), the forensic identification software used to identify the victims of the World Trade Center attacks
© Currently with Eastman Kodak as Macintosh Software Architect for Consumer Inkjet Printing

 E
T
areth
collece

Ground Zero

© Two 110 story towers
© 15 buildings over 16 acres
© Six basement levels and four subway lines
© 24,000 gallons of jet fuel
© Fires burned at $1800^{\circ} \mathrm{F}$ for over 3 months
© 2 billion pounds of rubble
© Existing DNA tools incapable of handling this magnitude

The Victims

© Unknown number of casualties early on

C Some family members afraid to come forward
c 20,000 total remains
© Some victims found in up to 200 fragments
© Majority of remains required DNA analysis

2,753 total victims
Nazareth
COLLEGE

The Recovery

Thousands of rescue workers work around the clock from 9/11/01 through 5/30/02 in the recovery effort

Forensic DNA Identification Project with NYC Chief Medical Examiner's Office continued for three years

Nazareth
COLLEGE

,

$\operatorname{Nazareth~}_{\substack{\text { COLLEGE }}}$

.

[^0]-

Staten Island Triage

Staten Island Recovery Site

Nazareth COLLEGE

Victim samples are typed using many DNA fingerprinting techniques, such as STR, MitoDNA \& SNP to match against a personal effect

Family members are cheek swabbed for their DNA so that Kinship identification can be made when direct matching is not available

Software Development

6 September 17: Armed Forces DNA Identification Lab [AFDIL] asked Gene Codes to update Sequencher ${ }^{\text {TM }}$ for the Pentagon and Shanksville crashes

C September 28: Office of the Chief Medical Examiner [OCME] in New York contacts Gene Codes for new software for the World Trade Center project
6) October 15: Development of M-FISys (Mass Fatality Identification System) underway
(3) December 13: M-FISys first release to OCME, followed by weekly releases thereafter
© Over the next three years, M-FISys is used to identify victims

M-FISys Team Meeting

DNA

Composed of an alphabet of four chemicals: A, C, G, T, human DNA consists of 3.5 Billion base pairs across 23 chromosomes

Your DNA is inherited from your parents
99.9\% of your DNA is shared with all of humanity

The remaining 0.1% (3.5 million base pairs) are what distinguishes us

Except for identical twins, each person's DNA is considered unique

DNA began to be used for forensle analysis in the milet-9080's

STR: Short Tandem Repeats

6 A repeat of a short sequence of bases (usually 4 or 5):
...gcctggatagatagatagatagatagatgttta...
(3) The above is repeated 5 times with a partial 3 bases
6) The value for this STR locus is 5.3 (called its allele)
6. Each locus contains a pair of alleles (inherited one from each parent), eg: $5.3 / 8$

Number of repeated STRs

Nazareth COLLEGE

STIR Profiles

6. In 1997 , the FBI standardized on 13 core STR loci for its national database, CODIS

6 STR analysis is the forensic standard for identification
© Includes two PowerPlex loci: Penta D and Penta E
© When both allele values are the same, it is called homozygous; otherwise, it is called heterozygous
© Gender: XX or XY
© These loci are "unlinked" and so independent

Allele Frequencies

TABLE 1-U.S. Caucasian allele frequencies for 15 autosomal STR loci $(\mathrm{N}=302)$.

	CSF1PO	FGA	TH01	IPOX	VWA	D3S1358	D5S818	D75820	D8S5179	D13S317	D16S539	D18S51	D21S11	D2S1338	D19S433
Allele Co															
5	--	--	0.002	0.002	-	--	--	-	--	-	--	--	--	--	--
6	--	--	0.232	0.002	--	-.	-	--	--	--	--	-.	..	--	.-
7	-.	--	0.190	-.	--	--	0.002	0.018	--	--	-	--	--	--	-
8	0.005	--	0.084	0.535	.-	.-	0.003	0.151	0.012	0.113	0.018	--	-	-	--
8.1	-.	-	--	--	--	--	--	0.002	--	--	--	--	-	--	-
9	0.012	--	0.114	0.119	--	..	0.050	0.177	0.003	0.075	0.113	--	-	-	--
9.3	--	--	0.368	--	--	--	.-	--	--	--	--	--	--	--	--
10	0.217	--	0.008	0.056	--	--	0.051	0.243	0.101	0.051	0.056	0.008	--	--	0.002
10.3	--	--	--	--	-	--	.-	--	.-	..	--	.-	--	--	--
11	0.301	--	0.002	0.243	--	0.002	0.361	0.207	0.083	0.339	0.321	0.017	--	--	0.005
12	0.361	-	--	0.041	-.	,	0.384	0.166	0.185	0.248	0.326	0.127	--	--	0.081
12.2	--	--	--	--	-	--	--	--	-	-	--	--	--	--	0.002
13	0.096	--	-	0.002	0.002	-	0.141	0.035	0.305	0.124	0.146	0.132	--	--	0.253
13.2	--	-	-	--	--	--	--	--	--	--	--	--	--	--	0.007
14	0.008	--	--	--	0.094	0.103	0.007	0.002	0.166	0.048	0.020	0.137	--	--	0.369
14.2	--	--	--	--	--	--	--	--	--	--	--	0.002	--	-	0.018
15	--	--	--	--	0.111	0.262	0.002	--	0.114	0.002	--	0.159	--	0.002	0.152
15.2	.-	-	--	--	-	-	--	--	-	--	.-	--	--	-.	0.035
16	--	--	--	--	0.200	0.253	--	\cdots	0.031	--	-	0.139	--	0.033	0.050
16.2	--	-	-	-	-	-	.-	--	--	--	--	--	--	-	0.015
17	-	-	-	--	0.281	0.215	.-	--	-.	.-	--	0.126	--	0.182	0.008
17.2	-	--	--	--	--	--	--	.-	--	--	..	--	--	--	0.002
18	--	0.026	.-	--	0.200	0.152	--	.-	--	.-	--	0.076	--	0.079	--
18.2	--	-.	.-	-	--	--	.-	.-	-	--	.-		--	--	0.002
19	-*	0.053	--	--	0.104	0.012	-	--	--	--	--	0.038	--	0.114	--
19.2	--	--	--	--	--	--	--	-	--	-	--	--	--	-	--
20	-	0.127	--	-	0.005	0.002	-	--	--	--	--	0.022	--	0.146	--
21	--	0.185	--	.-	0.002	--	-.	-	-	.-	--	0.008	-	0.041	--
21.2	--	0.005	--	--	-	-	..	--	-.	.-	--	-	-	--	--
22	--	0.219	-	--	--	-	-	--	-	-	--	0.008	-	0.038	--
22.2	-	0.012	--	--	--	--	--	--	--	\cdots	-	-	-	--	-
$\begin{gathered} 22.3 \\ 23 \end{gathered}$	-.	$0 .{ }_{0}^{6}$) 1	Si	3	1, - ل	IV	103	1	1. -4	N	\triangle		$\stackrel{-}{0.118}$.-
23.2	--										,	0030	ndf	aza	th
24	..	ateo	WV	N.CS	nis	.90V/	troa	selou	..pr	est	er	0.3 a	pdi	0.12 C	OLLEGE

Allele Frequencies

6 According to the Hardy-Weinberg Principle: p^{2} for homozygous alleles, $p=$ frequency of allele 2pq for heterozygous alleles, $p, q=$ frequency of alleles
© This assumes an sufficiently large population
© Since the population is relatively small, we must introduce the inbreeding coefficient $\boldsymbol{\theta}$:

$$
\begin{aligned}
& p^{2}+p(1-p) \theta \quad \text { for homozygous alleles } \\
& 2 p q(1-\theta) \text { for heterozygous alleles }
\end{aligned}
$$

© Because θ is very small (0.03), we round on the side of being conservative:

$$
\begin{array}{ll}
p^{2}+p(1-p) \theta & \text { for homozygous alleles } \\
2 p q & \text { for heterozygous alleles }
\end{array}
$$

Profile Frequency

Locus Victim Sample Equation Prob Likelihood

Gender	XY	XY	$1 / 2$	0.5000	2.00
D3S1358	$14 / 16$	$14 / 16$	2 pq	0.0650	15.38
vWA	$15 / 16$	-			1.00
FGA	$20 / 24$	$20 / 24$	2 pq	0.0401	24.95
D8S1179	12	12	$\mathrm{p}^{2}+\mathrm{p}(1-\mathrm{p}) \theta$	0.0224	44.68
D21S11	$28 / 31.2$	$28 / 31.2$	2 pq	0.0330	30.31
D18S51	$14 / 17$	-			1.00
D5S818	$8 / 11$	$8 / 11$	2 pq	0.0106	94.47
D13S317	8	8	$\mathrm{p}^{2}+\mathrm{p}(1-\mathrm{p}) \theta$	0.0108	92.62
D7S820	$10 / 13$	$10 / 13$	2 pq	0.0172	58.13
D16S539	9	9	$\mathrm{p}^{2}+\mathrm{p}(1-\mathrm{p}) \theta$	0.0117	85.12
TH01	$6 / 9$	-			1.00
TPOX	$8 / 10$	-			1.00
CSF1PO	$10 / 12$	$10 / 12$	2 pq	0.1650	6.06
Penta D	9	-			1.00
Penta E	$8 / 12$	-			1.00

2.7E+14

Allelic Dropout

Locus Victim Sample Equation Prob Likelihood

Gender	XY	XY	$1 / 2$	0.5000	2.00
D3S1358	$14 / 16$	$14 / 16$	2 pq	0.0650	15.38
vWA	$15 / 16$	-			1.00
FGA	$20 / 24$	$20 / 24$	2 pq	0.0401	24.95
D8S1179	12	12	$\mathrm{p}^{2}+\mathrm{p}(1-\mathrm{p}) \theta$	0.0224	44.68
D21S11	$28 / 31.2$	$28 / 31.2$	2 pq	0.0330	30.31
D18S51	$14 / 17$	-			1.00
D5S818	$8 / 11$	8	2 p	0.3205	3.12
D13S317	8	8	$\mathrm{p}^{2}+\mathrm{p}(1-\mathrm{p}) \theta$	0.0108	92.62
D7S820	$10 / 13$	$10 / 13$	2 pq	0.0172	58.13
D16S539	9	9	$\mathrm{p}^{2}+\mathrm{p}(1-\mathrm{p}) \theta$	0.0117	85.12
TH01	$6 / 9$	-			1.00
TPOX	$8 / 10$	-			1.00
CSF1PO	$10 / 12$	$10 / 12$	2 pq	0.1650	6.06
Penta D	9	-			1.00
Penta E	$8 / 12$	-			1.00

9.0E+12

Likelihood Threshold

6 How good is good enough?
© OCME wanted a minimum likelihood threshold set such that a chance of any mismatch would be less than one in a million
© What does this mean mathematically?
© Choose n such that identifications are satisfied when the likelihood value of a sample is $\geq 10^{n}$
© The probability of a fortuitous match of such a sample is thus $\mathrm{p}=10^{-n}$, no mismatch $\mathrm{q}=1-10^{-n}$
© Unknown population size, but early estimates assumed a population as high as 5000

Likelihood Threshold

Q The probability of no mismatches is thus: q^{5000}
© The probability of any mismatch in the population:

$$
1-q^{5000}=1-\left(1-10^{-n}\right)^{5000}
$$

© For this to be a "less than one in a million chance" occurrence yields the equation:

$$
1-\left(1-10^{-n}\right)^{5000}<0.000001
$$

© Solving for n we get:

$$
n>\log _{10}(1-\sqrt[5000]{0.999999})=9.6989 \ldots
$$

© Thus we choose $n=10$

DNA Matching

6 12,000 personal effects were collected from families
© A sample can be identified to a personal effect if:
\checkmark Has at least 7 common alleles
\checkmark No more than one mismatch due to allelic dropout
\checkmark Likelihood value $\geq 10^{10}$
6 $\sim 30 \%$ of the victim samples had complete profiles
© $\sim 20 \%$ had partial profiles with likelihoods $\geq 10^{10}$
6 $\sim 20 \%$ had partial profiles with likelihoods $<10^{10}$
© $\sim 30 \%$ of the STR profiles had no data at all
6 STR analysis alone would not be sufficient

M-FISys STR Form ${ }^{\dagger}$

STR mtDNA SNP Jobs
tp presented in The Mathematics of DNA Identification, American Academy of Forensic Science, 2003

Kinship Analysis

Nazareth
COLLEGE

Kinship Analysis

Q Many personal effects lacked sufficient DNA
Others were contaminated by external DNA
Cheek swabs from family members were taken at Pier 94, so that a pedigree tree could be generated
© DNA profiles of victims are compared using the Symbolic Kinship Program algorithm (C. Brenner)
© A product of common loci can be used to produce kinship likelihood ratios (identifications $\geq 10^{6}$)
© A likelihood ratio is the ratio of the probability that the sample is a member of the given pedigree $\left(H_{l}\right)$ over the probability that it is unrelated $\left(H_{0}\right)$

Kinship Example \#\#1

Let p, q, r, s represent alleles and let p, q, r, s represent the probabilities of these alleles. (Let $p=0.005, q=0.02$)

A victim sample with allele pq and a pedigree containing two parents: father pr and mother qis
$L R=P\left(H_{1}\right) \div P\left(H_{0}\right)=P(\mathrm{pq} \mid \mathrm{pr}+\mathrm{qs}) \div P(\mathrm{pq} \mid$ unrelated $)$

$$
\begin{aligned}
& P\left(H_{1}\right)=1 / 2 \times 1 / 2 \times 2 p r \times 2 q s=p q r s \\
& P\left(H_{0}\right)=2 p q 2 p r 2 q s=8 p^{2} q^{2} r s \\
& L R=p q r s \div 8 p^{2} q^{2} r s=1 / 8 p q \\
& =1250 \quad \text { Nazareth } \\
& \text { COLLEGE }
\end{aligned}
$$

Kinship Example \#2

The same victim sample with Pedigree \#2 containing father que and sister q

For the pq victim sample to fit, the mother must be pq for H_{l}

$$
P\left(H_{D}\right)=1 / 4 \times 1 / 4 \times 2 p q 2 q r=1 / 4 p q^{2} r
$$

In H_{0}, mother may be q or $q x$, thus $P\left(H_{0}\right)=P\left(H_{q}\right)+P\left(H_{q x}\right)$

$$
P\left(H_{q}\right)=2 p q^{4} r \quad P\left(H_{q v}\right)=2 p q^{3}(1-q) r \rightarrow P\left(H_{0}\right)=2 p q^{3} r
$$

$$
L R=P\left(H_{1}\right) \div P\left(H_{0}\right)=1 / 8 q=6.25
$$

Kinship Example \#3

Relations may involve half siblings, cousins and any number of combinations

$$
L R=(1+p+q) / 8 p q=1281.25
$$

Kinship Equations

	VRT-DM8180705	- BM-50527 \#...	B BU-50527 \#03	B B-05721 \#02	VIRT-DM8180705
Gen	XY	XX	XX	XX	-
D3S1358	15/16	15	14/15	15/16	1/4p
vWA	15/18	14/15	14/18	16/18	$(1+\mathrm{q}) / 8 \mathrm{pq}$
FGA	23/24	24	23/24	21/24	$(1+\mathrm{p}) / 4 \mathrm{pq}$
D8S1179	10/13	10/13	10/13	13/14	$(\mathrm{p}+\mathrm{q}+\mathrm{pp}+2 \mathrm{pq}+\mathrm{qq}) /(8 p p q+8 p q q)$
D21S11	30/31	30/33.2	30/31	27/31	$(1+q) / 8 \mathrm{pq}$
D18551	12/17	12/13	12/16	12/14	$(1+q) / 8 \mathrm{pq}$
D5S818	10	10/12	10/12	9/10	$(1+p+q) /(4 p p+4 p q)$
D135317	8/11	8/11	11/13	11	$(\mathrm{p}+\mathrm{q}) / 8 \mathrm{pq}$
D7S820	10/12	11/12	11/12	10/11	1/8q
D16S539	10/12	12	12	12	$1 / 4 \mathrm{q}$
TH01	8/9.3	7/9.3	7/10	8/9.3	1/8p
TPOX	8/9	8/9	8/9	8/11	$(p+q+p p+2 p q+q q) /(8 p p q+8 p q q)$
CSF1P0	9	9/11	9/11	9/13	$(1+p+q) /(4 p p+4 p q)$
Penta D	-	-	-	-	-
Penta E	-	-	-	-	-
					-
Likelihood	$1.01 \mathrm{e}+18$	$1.54 \mathrm{e}+17$	$4.33 \mathrm{e}+16$	$2.01 \mathrm{e}+17$	99.990883\%
Kinship LR	99.990883\%	$2.59 \mathrm{e}+5$	$4.59 \mathrm{e}+5$	$5.73 \mathrm{e}+5$	

M-FISys Kinship Form

fpresented in Bioinformatics for 9/11, Dr. Simon Mercer, Bio IT World, 2004

Sample Name	\triangle	Gen	D3S1358	WWA	FGA	D8S1179	D21511	D18S51	\wedge
V-50289-01		XY	neg	14/14	neg	neg	31.2/32.2	14/15	
V-53129-01		neg							
V-57681-01		$X Y$	9/15	15/21	neg	9/14	28/29	neg	
V-62338-01		$X Y$	15/20	12/19	25/26	9/12	29.2/322	13/22	
V-70593		X	14/17	15/19	19/27	10/15	30/36	neg	
V -78153-01		neg	\checkmark						
\leqslant								7	

†http://www.genecodesforensics.com/M-FISysBrochure.pdf
Close

Nazareth
COLLEGE

Match Methods on Remains

MJitochondrial DNA

Nazareth
COLLEGE

Mitochondrial DNA

© Some victim samples were so degraded that STR analysis could not yield an identification
© Mitochondrial DNA (mtDNA) is heartier material, surviving under extreme conditions
(3) mtDNA is a 16,569 -based circular genome
6) Being circular (unlike the double helix of nuclear DNA), it is more stable and less prone to mutation
© Although each cell contains only two copies of nuclear DNA, it has thousands of copies of mtDNA
(3) mtDNA has been retrieved from ancient bones, including woolly mammoths and Neanderthals

mtDNA Map

Nazareth
COLLEGE

mtDNA Typing

Q Mito-typing involves direct sequencing of two highly variable regions of mtDNA (HV1, HV2)

Q Differences from the Anderson Sequence (an internationally accepted standard) are tracked
mtDNA profile 16093: C

16224: D
16311:
195:
263:
315.1:
© mtDNA is not unique, it is maternally inherited
© Thus matching can be done against a personal effect or from maternal relatives (eg: mother, full sibling, maternal half-sibs, not father or paternal half-sibs)

- 75\% of the victims had maternal relatives providing sample mtDNA for potential matches

mtDNA Likelihood

Q Likelihood for a given mitotype is determined by the number of hits x in the FBI's CODIS ${ }^{\text {mt }}$ database, of size n (~ 5000). Thus we have probability $p=x / n$.
© For a Binomial distribution, we have the equations: $\mu=p$ (mean) and $\sigma=\sqrt{ } p(1-p)$ (standard deviation)
© The 95% confidence interval is defined by the formula:

$$
[\mu-1.96 \sigma / \sqrt{n}, \mu+1.96 \sigma / \sqrt{n}]
$$

(3) Which reduces to an upper bound of $x / n+2 \sqrt{ } x(n-x) / n$
© If no database entries, we use: $1-\alpha^{1 / n}$ with $\alpha=0.05$
(6) mtDNA is independent of STR, so can be multiplied

	Victim	PE	BF \#01	BM \#01	BU \#02
Amel	CC	CC	-	TT	TT
65882	TC	TC	-	TC	TC
68532	-	TC	-	TC	CC
234217	CC	CC	-	TC	CC
231480	TT	TT	-	TT	TT
62059	-	-	-	TT	TT
56608	-	TC	-	TC	TC
61955	-	TT	-	TC	TC
220875	-	TT	-	TT	TT
58388	-	TT	-	TT	TT
63799	CC	CC	-	CC	TC
219561	TT	TT	-	TT	TT
60188	-	CC	-	CC	CC
182622	-	TC	-	TT	TT
85187	-	TC	-	TC	TC
212605	CC	CC	-	CC	CC
58091	-	TT	-	TT	TT
66026	-	TT	-	TC	TC
63836	-	CC	-	CC	CC
214373	TC	TC	-	TC	TT
238155	TT	TT	-	TT	TT

Two out of three SNP's involve replacing a C with a T

Of these, there is a panel
of 70 chosen by Orchid BioSciences in for each C and T are equally likely

Many more SNP's are needed to reach STR likelihood levels

Used with Kinship Analysis

SNP Likelihood

G The Center for Genome Information concluded that although these 70 SNP's lack theoretical independence, allelic dependence was low enough for use in forensic identification

Conservative likelihoods can be calculated even without the assumption of equi-probability. Heterozygous SNP's have a minimum likelihood of 2:

$$
f=2 p q=2 p(1-p) \leq 0.5 \forall p \in[0,1] ; \quad \therefore L=1 / f \geq 2
$$

© Thus the minimum likelihood of a SNP profile containing n heterozygous alleles is 2^{n}
© Average profile has ~ 35 heterozygous alleles, minimum likelihood of $2^{35} \approx 10^{10}$
P

Statistics

6 2,753 victims (not including 10 hijackers)
© 21,814 total remains recovered
(9) 52,528 STR profiles
© $31,155 \mathrm{mtDNA}$ profiles
© 16,938 SNP profiles
© Victims identified (as of 2/10/12): 1,633 (59\%)
© Hijackers identified: 3 (out of 10)
© Remains identified: 12,811 (59\%)

Identification Modalities

Of all the victims identified by a single modality, DNA represented 81% of the identifications

Of identifications made with multiple modalities, 87\% included DNA

Bibliography

Cash, Hoyle, Sutton, Development Under Extreme Conditions: Forensic Bioinformatics in the Wake of the World Trade Center Disaster (Pacific Symposium of BioComputing, 2003)

Hoyle, Mathematics of Forensic DNA Identification (American Academy of Forensic Science, 2003)

Mercer, Bioinformatics for 9/II (Bio IT World, 2004)
Shaler, Who They Were: Inside the World Trade Center DNA Story (ISBN 1416584471!)

Ribowsky, Dead Center: Behtinal the Scenes of he World's Langest Meatical Eivaminer \& Office (ISBEN 006! 189405)

Butler, Forensic DNA Typing (ISBN 0121479523)

Further Reading

DNA STORY: THE UNPRECEDENTED

EFFORT TO IDENTIFY THE MISSING WERE

ROBERT C. SHALER
 |ly |n min

BEHINDTHESCENES AT THE WDRLD'S LARGEST MEDICAL EXAMINER'S DFFICE

More Information

Web Site:

http://www.jonhoyle.com/MAASeaway

Slides:

http://wwwjonhoyle.com/Presentations/ForensicMathNaz

Contacts

jonsisoyle@urnge.cons
Nazareth
COLLEGE

Nazareth

[^0]:

