

Forensic Mathematics and 9/11

Jonathan Hoyle February 22, 2012

Introduction

World Trade Center Project

- 9/11 and NYC
- Direct Matching (STR Analysis)
- Kinship Analysis
- Mitochondrial DNA
- SNP's
- Summary

Introduction

- My name is Jonathan Hoyle
- Both my Undergraduate (University of Delaware) and Graduate (University of Michigan) studies were in Mathematics with a Computer Science minor
- From 2001-2005, Mathematician and Software Engineer with Gene Codes Corp in Ann Arbor, MI
- Involved with M-FISys (pronounced "emphasis"), the forensic identification software used to identify the victims of the World Trade Center attacks
- Currently with Eastman Kodak as Macintosh Software Architect for Consumer Inkjet Printing

9/11 and MYC

Ground Zero

- Two 110 story towers
- 15 buildings over 16 acres
- Six basement levels and four subway lines
- 24,000 gallons of jet fuel
- Fires burned at 1800°F for over 3 months
- 2 billion pounds of rubble

Existing DNA tools incapable of handling this magnitude

Nazareth

The Victims

Unknown number of casualties early on

Some family members afraid to come forward

20,000 total remains

Some victims found in up to 200 fragments

Majority of remains required DNA analysis

2,753 total victims

The Recovery

Thousands of rescue workers work around the clock from 9/11/01 through 5/30/02 in the recovery effort

Forensic DNA Identification Project with NYC Chief Medical Examiner's Office continued for three years

Staten Island Triage

Trucks ship tons of debris from Ground Zero were sent to the Staten Island Recovery Site

Forensic anthropologists examine the debris to determine if it contains any human remains

Human remains found were sent to the Forensic Investigation Center in Albany, NY Nazareth

Staten Island Recovery Site

Victim samples are typed using many DNA fingerprinting techniques, such as STR, MitoDNA & SNP to match against a personal effect

Family members are cheek swabbed for their DNA so that Kinship identification can be made when direct matching is not available

Software Development

- September 17: Armed Forces DNA Identification Lab [AFDIL] asked Gene Codes to update Sequencher[™] for the Pentagon and Shanksville crashes
- September 28: Office of the Chief Medical Examiner [OCME] in New York contacts Gene Codes for new software for the World Trade Center project
- October 15: Development of M-FISys (Mass Fatality Identification System) underway
- December 13: M-FISys first release to OCME, followed by weekly releases thereafter
- Over the next three years, M-FISys is used to identify victims

M-FISys Team Meeting

Direct Matching STR Analysis

DNA

Composed of an alphabet of four chemicals: A, C, G, T, human DNA consists of 3.5 Billion base pairs across 23 chromosomes

Your DNA is inherited from your parents

99.9% of your DNA is shared with all of humanity

The remaining 0.1% (3.5 million base pairs) are what distinguishes us

Except for identical twins, each person's DNA is considered unique

DNA began to be used for forensic analysis in the mid-1980's Nazareth

STR: Short Tandem Repeats

A repeat of a short sequence of bases (usually 4 or 5):

- ...gcctggatagatagatagatagatagatgttta...
- The above is repeated 5 times with a partial 3 bases
- The value for this STR locus is 5.3 (called its allele)
- Each locus contains a pair of alleles (inherited one from each parent), eg: 5.3 / 8

STR Profiles

- In 1997, the FBI standardized on 13 core STR loci for its national database, CODIS
- STR analysis is the forensic standard for identification
- Includes two PowerPlex loci: Penta D and Penta E
- When both allele values are the same, it is called homozygous; otherwise, it is called heterozygous
- Gender: XX or XY
- These loci are "unlinked" and so independent

Allele Frequencies

TABLE 1–U.S. Caucasian allele frequencies for 15 autosomal STR loci (N = 302).

	CSF1PO	FGA	TH01	TPOX	<u>vwa</u>	D3S1358	<u>D5S818</u>	D7S820	D8S1179	D13S317	D16\$539	D18S51	D21S11	D2S1338	D19S433
Allele															
5			0.002	0.002											
6			0.232	0.002											
7		•	0.190				0.002	0.018							
8	0.005		0.084	0.535	**		0.003	0.151	0.012	0.113	0.018				
8.1								0.002							••
9	0.012		0.114	0.119			0.050	0.177	0.003	0.075	0.113				
9.3			0.368												
10	0.217		0.008	0.056			0.051	0.243	0.101	0.051	0.056	0.008			0.002
10.3															
11	0.301		0.002	0.243		0.002	0.361	0.207	0.083	0.339	0.321	0.017			0.005
12	0.361			0.041			0.384	0.166	0.185	0.248	0.326	0.127			0.081
12.2															0.002
13	0.096			0.002	0.002		0.141	0.035	0.305	0.124	0.146	0.132			0.253
13.2															0.007
14	0.008				0.094	0.103	0.007	0.002	0.166	0.048	0.020	0.137			0.369
14.2												0.002		**	0.018
15					0.111	0.262	0.002		0.114	0.002		0.159		0.002	0.152
15.2								-+							0.035
16					0.200	0.253			0.031			0.139		0.033	0.050
16.2				-+							**				0.015
17					0.281	0.215						0.126		0.182	0.008
17.2											**				0.002
18		0.026			0.200	0.152						0.076		0.079	
18.2															0.002
19		0.053			0.104	0.012						0.038		0.114	
19.2									+-						
20		0.127			0.005	0.002						0.022	**	0.146	
21		0.185			0.002							0.008		0.041	
21.2		0.005			**										
22		0.219										0.008		0.038	
22.2		0.012													
22.3			Earo	nei		- I.		0002		-/0		-1			
23		0. 🔁	FUIE	1121		/I, JL	41 y 4	.003	,	. 4 0), INC	J. 🖛	- እ	T 0.118	.1
23.2		0.003	- //					-	. h			000-	أعتم	Narai	reth
24		0.135).//WW	w.cst	I.MS	l.gov/s	strba	se/pi	<u>no b</u>	es/B	uuer2	uusa	.par-	0.123	OLLEG

Allele Frequencies

- According to the Hardy-Weinberg Principle:
 p²for homozygous alleles, p = frequency of allele
 2pq for heterozygous alleles, p,q = frequency of alleles
- This assumes an sufficiently large population
- Since the population is relatively small, we must introduce the inbreeding coefficient θ:
 p² + p(1-p)θ for homozygous alleles
 2pq(1-θ) for heterozygous alleles
- Secause θ is very small (0.03), we round on the side of being conservative:

Nazat

 $p^{2} + p(1-p)\theta$ for homozygous alleles 2pq for heterozygous alleles

Profile Frequency

Locus	Victim	Sample	Equation	Prob	Likelihood
Gender	XY	XY	1/2	0.5000	2.00
D3S1358	14/16	14/16	2pq	0.0650	15.38
vWA	15/16	11 -			1.00
FGA	20/24	20/24	2pq	0.0401	24.95
D8S1179	12	12	$p^2+p(1-p)\theta$	0.0224	44.68
D21S11	28/31.2	28/31.2	2pq	0.0330	30.31
D18S51	14/17	1.7			1.00
D5S818	8/11	8/11	2pq	0.0106	94.47
D13S317	8	8	p ² +p(1-p)θ	0.0108	92.62
D7S820	10/13	10/13	2pq	0.0172	58.13
D16S539	9	9	p ² +p(1-p)θ	0.0117	85.12
TH01	6/9	10 -			1.00
TPOX	8/10	-		~	1.00
CSF1PO	10/12	10/12	2pq	0.1650	6.06
Penta D	9				1.00
Penta E	8/12	19 2			1.00

Allelic Dropout

Locus	Victim	Sample	Equation	Prob	Likelihood
Gender	XY	XY	1/2	0.5000	2.00
D3S1358	14/16	14/16	2pq	0.0650	15.38
vWA	15/16	-			1.00
FGA	20/24	20/24	2pq	0.0401	24.95
D8S1179	12	12	$p^2+p(1-p)\theta$	0.0224	44.68
D21S11	28/31.2	28/31.2	2pq	0.0330	30.31
D18S51	14/17				1.00
D5S818	8/11	8	2p	0.3205	3.12
D13S317	8	8	$p^2+p(1-p)\theta$	0.0108	92.62
D7S820	10/13	10/13	2pq	0.0172	58.13
D16S539	9	9	$p^2+p(1-p)\theta$	0.0117	85.12
TH01	6/9	-			1.00
ΤΡΟΧ	8/10	-			1.00
CSF1PO	10/12	10/12	2pq	0.1650	6.06
Penta D	9				1.00
Penta E	8/12	- <u>-</u>			1.00
					9.0E+12

Likelihood Threshold

- How good is good enough?
- OCME wanted a minimum likelihood threshold set such that a chance of *any* mismatch would be less than one in a million
- What does this mean mathematically?
- Choose *n* such that identifications are satisfied when the likelihood value of a sample is $\geq 10^n$
- The probability of a fortuitous match of such a sample is thus $p = 10^{-n}$, no mismatch $q = 1 10^{-n}$
- Unknown population size, but early estimates assumed a population as high as 5000

Likelihood Threshold

 $^{\scriptsize \textcircled{60}}$ The probability of no mismatches is thus: ${
m q}^{5000}$

The probability of any mismatch in the population: $1 - q^{5000} = 1 - (1 - 10^{-n})^{5000}$

For this to be a "less than one in a million chance" occurrence yields the equation:

 $1 - (1 - 10^{-n})^{5000} < 0.000001$

Solving for *n* we get:

 $n > log_{10} (1 - \sqrt[5000]{0.999999}) = 9.6989...$

Solution Thus we choose n = 10

DNA Matching

- 12,000 personal effects were collected from families
- A sample can be identified to a personal effect if:
 - ✓ Has at least 7 common alleles
 - \checkmark No more than one mismatch due to allelic dropout
 - ✓ Likelihood value $≥ 10^{10}$
- $\sim -30\%$ of the victim samples had complete profiles
- ${igsimeq}$ ~20% had partial profiles with likelihoods $\geq 10^{10}$
- $^{igodold n}$ ~20% had partial profiles with likelihoods $< 10^{10}$
- \sim ~30% of the STR profiles had no data at all
- STR analysis alone would not be sufficient

M-FISys STR Form[†]

M-FISys 4.0.2-Master List-Default

Nazareth

L	ocate ID	-	Sampl	es: 12		Identifie	d Aggrega	tes: 1	Identit	iable Aggr	egates:	1	Unidentified	d Aggregat	ies: 2					
ID	RM	Likelihood	I	# M Sn	Gen	D3S1358	wka.	FGA	D8S1179	D21S11	D18551	D5S818	D135317	D7 S820	D165539	TH01	TPOX	CSF1PO	Penta D	Penta
+ RM# 5913 (6)		2.8E+017	0		XY	14/17	16/17	23/25	13	30	13/14	11	8/11	11/13	7/9	8/11	11/13	neg	-	-
RM# 4141 (4)		6.2E+020	1		хх	14/17	17	23/24	15/17	28/32	13/15	12	10/11	12	12/13	9	8/11	10/13	11/12	12/14
SP-90003-1	4141	6.2E+020		16	хх	14/17	17	23/24	15/17	28/32	13/15	12	10/11	12	12/13	9	8/11	10/13	11/12	12/14
DM0193281	4141	6.2E+020		16	хх	14/17	17	23/24	15/17	28/32	13/15	12	10/11	12	12/13	9	8/11	10/13	11/12	12/14
DM0196708	4141	6.2E+020		16	хх	14/17	17	23/24	15/17	28/32	13/15	12	10/11	12	12/13	9	8/11	10/13	11/12	12/14
URT- DM0180047	4141	6.2E+020	I	16	хх	14/17	17	23/24	15/17	28/32	13/15	12	10/11	12	12/13	9	8/11	10/13	11/12	12/14
DM0180 Metho	4141: Simp: id: Test	son, Marge (U	hain 1)	16	хх	14/17	17	23/24	15/17	28/32	13/15	12	10/11	12	12/13	9	8/11	10/13	11/12	12/14
OXO1- DM0180018	4141	6.2E+020	I	16	хх	14/17	17	23/24	15/17	28/32	13/15	12	10/11	12	12/13	9	8/11	10/13	11/12	12/14
RM# 9112 (3)		1.6E+018	0		хх	13/16	16/17	20/22	13/15	28/29	12	12/13	9/10	11/12	8/11	6/9	10	10/12	-	-
SP-80007-1	9112	1.9E+019		12	хх	13/16	16	20/22	13/15	28/29	12	12/13	9/10	11/12	8	6/9	10	10/12		
SP-80007-2	9112	1.9E+019		12	хх	13/16	16	20/22	13/15	28/29	12	12/13	9/10	11/12	8	6/9	10	10/12		-
DM0190020		1.6E+018		14	хх	13/16	16/17	20/22	13/15	28/29	12	12/13	9/10	11/12	8/11	6/9	10	10/12		
AS040004 (4)		4.9E+015	0		XY	16/17	17	20/21	10/11	30/31	15/16	10/12	8/11	11	11/13	7/9	8	8/11	-	-
DM0190066		4.9E+015		14	XY	16/17	17	20/21	10/11	30/31	15/16	10/12	8/11	11	11/13	7/9	8	8/11		-
DM0190221		4.9E+015		14	ХҮ	16/17	17	20/21	10/11	30/31	15/16	10/12	8/11	11	11/13	7/9	8	8/11		-
DM0190881		4.9E+015		14	XY	16/17	17	20/21	10/11	30/31	15/16	10/12	8/11	11	11/13	7/9	8	8/11	-	-
DM0190889		/ 0F+015		14	vv	16/17	17	20/24	1081	30/31	15/16	10/12	8/11	44	11/13	7/0	8	8/11		
Expand All Collaps	e All	Hide Identic	al Allele	s E	Kolude	B	Merge		Export							□ Hide	Names	Print		Dptions
TR mtDNA SNP	Jobs																			

[†]presented in *The Mathematics of DNA Identification*, American Academy of Forensic Science, 2003

Kinship Analysis

Kinship Analysis

- Many personal effects lacked sufficient DNA
- Others were contaminated by external DNA
- Cheek swabs from family members were taken at Pier 94, so that a pedigree tree could be generated
- DNA profiles of victims are compared using the *Symbolic Kinship Program* algorithm (C. Brenner)
- A product of common loci can be used to produce kinship likelihood ratios (identifications $\geq 10^6$)
- A likelihood ratio is the ratio of the probability that the sample is a member of the given pedigree (H₁) over the probability that it is unrelated (H₀)

Kinship Example #1

Let p,q,r,s represent alleles and let p, q, r, s represent the probabilities of these alleles. (Let p = 0.005, q = 0.02)

A victim sample with allele pq and a pedigree containing two parents: father pr and mother qs

 $LR = P(H_{l}) \div P(H_{0}) = P(pq | pr + qs) \div P(pq | unrelated)$ pr $P(H_{l}) = \frac{1}{2} \times \frac{1}{2} \times 2pr \times 2qs = pqrs$ $P(H_{0}) = 2pq2pr2qs = 8p^{2}q^{2}rs$ $LR = pqrs \div 8p^{2}q^{2}rs = 1/8pq$ = 1250Nazareth

Kinship Example #2

The same victim sample with Pedigree #2 containing father **qr** and sister **q**

For the **pq** victim sample to fit, the mother must be **pq** for H_1

 $P(H_1) = \frac{1}{4} \times \frac{1}{4} \times 2pq^2qr = \frac{1}{4}pq^2r$

In H_0 , mother may be **q** or **q***x*, thus $P(H_0) = P(H_q) + P(H_{qx})$ $P(H_q) = 2pq^4r \quad P(H_{qx}) = 2pq^3(1-q)r \implies P(H_0) = 2pq^3r$ $LR = P(H_1) \div P(H_0) = 1/8q = 6.25$ Nazare

Nazareth

Kinship Example #3

Some pedigrees can be complicated, with partial information and extended relationships

> Relations may involve half siblings, cousins and any number of combinations

LR = (1+p+q) / 8pq = 1281.25

Kinship Equations

	VIRT-DM8180705	✓ BM-50527 #	🗹 BU-50527#03	🗹 BD-05721#02	VIRT-DM8180705
Gen	XY	XX	XX	XX	-
D3S1358	15/16	15	14/15	15/16	1/4p
vWA	15/18	14/15	14/18	16/18	(1+q)/8pq
FGA	23/24	24	23/24	21/24	(1+p)/4pq
D8S1179	10/13	10/13	10/13	13/14	(p+q+pp+2pq+qq)/(8ppq+8pqq)
D21511	30/31	30/33.2	30/31	27/31	(1+q)/8pq
D18551	12/17	12/13	12/16	12/14	(1+q)/8pq
D5S818	10	10/12	10/12	9/10	(1+p+q)/(4pp+4pq)
D13S317	8/11	8/11	11/13	11	(p+q)/8pq
D7S820	10/12	11/12	11/12	10/11	1/8q
D165539	10/12	12	12	12	1/4q
TH01	8/9.3	7/9.3	7/10	8/9.3	1/8p
TPOX	8/9	8/9	8/9	8/11	(p+q+pp+2pq+qq)/(8ppq+8pqq)
CSF1P0	9	9/11	9/11	9/13	(1+p+q)/(4pp+4pq)
Penta D	-	-	-	-	-
Penta E	-	-	-	-	-
					-
Likelihood	1.01e+18	1.54e+17	4.33e+16	2.01e+17	99.990883%
Kinship LR	99.990883%	2.59e+5	4.59e+5	5.73e+5	

M-FISys Kinship Form^{*}

M-FISys 7.00-Family Display-	Administrator					_ 🗆 🗵
<u>F</u> amily	<u>P</u> rofiles					
#76		VIRT- DM0111673	BM-01651 #01	BU-51601#01	BU-64642 #01	BS-51602 #02
Victim VIRT-DM0318633 VIRT-DM0018303 VIRT-DM0018306 VIRT-DM0018306 VIRT-DM0018306 VIRT-DM0018306 VIRT-DM0019306 VIRT-DM0019306 VIRT-DM0019306 VIRT-DM0019306 VIRT-DM0019307 VIRT-DM0019306 VIRT-DM0019307 VIRT-DM0000206 VIRT-DM0202227	Gen D3S1358 WVA FGA D8S1179 D21S11 D18S51 D5S818 D13S317 D7S820 D16S539 TH01 TPOX CSF1PO Penta D Penta D	XY 16 17/19 22/25 14/16 32.2 17/18 12/13 12/13 12/14 8 9/14 7 6/8 8/12 6/8 11	XX 14/16 19/20 22/25 14 28/32.2 18 8/13 11/14 8/9 9/14 7 6/9 8/14 neg neg	XY 16 17/19 22/25 14/16 32.2 17/18 12/13 12/13 12/14 8 9/14 7 6/8 8/12 neg neg	XY 16 17/19 22/25 14/16 32.2 17/18 12/13 12/13 12/14 8 9/14 7 6/8 8/12 neg neg	XY 15/16 17 22 14/15 31/32.2 17/18 12/13 12/13 12/14 8/11 9/14 6/7 6 9/12 6/9 11/15
	min LR to V	1.4E+023	2.7E+006	9.9E+008	9.9E+008	2.0E+007
	Identification Meth	nod				Þ
ST	add'l pieces					
Reported Adjusted						Kinship Work List

*presented in *Bioinformatics for 9/11*, Dr. Simon Mercer, Bio IT World, 2004

Sample Name 🔺	Gen	D3S1358	WWA	FGA	D8S1179	D21S11	D18S51	^
V-50289-01	XY	neg	14/14	neg	neg	31.2/32.2	14/15	
V-53129-01	neg	neg	neg	neg	neg	neg	neg	
V-57681-01	XY	9/15	15/21	neg	9/14	28/29	neg	
V-62338-01	XY	15/20	12/19	25/26	9/12	29.2/32.2	13/22	
V-70593	\times	14/17	15/19	19/27	10/15	30/36	neg	-
V-78153-01	neg	neg	neg	neg	neg	neg	neg	~
<		1				1		
					_			

http://www.genecodesforensics.com/M-FISysBrochure.pdf

×

Close

M-FISys Pedigree Sandbox[†] displays the pedigree chart as a ratio

Pedigree chart is editable, making complex family relationships easy to manage

Used in other mass disaster forensics projects

Match Methods on Remains

Other 8<mark>%</mark>

Kinship 25%

Direct Match 41%

Direct & Kinship 26%

7/25/03 Statistics: "Who They Were" ©2005 Robert Shaler Forensics

Mitochondrial DNA

Mitochondrial DNA

- Some victim samples were so degraded that STR analysis could not yield an identification
- Mitochondrial DNA (mtDNA) is heartier material, surviving under extreme conditions
- mtDNA is a 16,569-based circular genome
- Being circular (unlike the double helix of nuclear DNA), it is more stable and less prone to mutation
- Although each cell contains only two copies of nuclear DNA, it has thousands of copies of mtDNA
- mtDNA has been retrieved from ancient bones, including woolly mammoths and Neanderthals
 Nazaret

mtDNA Map

mtDNA Typing

- Mito-typing involves direct sequencing of two highly variable regions of mtDNA (HV1, HV2)
- Differences from the Anderson Sequence (an internationally accepted standard) are tracked

profile
С
D
С
С
G
С

- mtDNA is not unique, it is maternally inherited
- Thus matching can be done against a personal effect or from maternal relatives (eg: mother, full sibling, maternal half-sibs, not father or paternal half-sibs)
- 75% of the victims had maternal relatives providing sample mtDNA for potential matches
 Nazareth

mtDNA Likelihood

- Solution Likelihood for a given mitotype is determined by the number of hits x in the FBI's CODIS^{mt} database, of size n (~5000). Thus we have probability p = x/n.
- For a Binomial distribution, we have the equations: (mean) and $\sigma = \sqrt{p(1-p)}$ (standard deviation)
- The 95% confidence interval is defined by the formula: $\begin{bmatrix} \mu & -1.96\sigma/\sqrt{n}, \mu + 1.96\sigma/\sqrt{n} \end{bmatrix}$
- Which reduces to an upper bound of $x/n + 2\sqrt{x(n-x)/n}$
- Solution If no database entries, we use: 1 $\alpha^{1/n}$ with α = 0.05
- mtDNA is independent of STR, so can be multiplied

 $\mu = p$

Single Nucleotide Polymorphisms, representing single base differences from the genome

C

2

A

SNP

Useful for badly degraded samples

Mutation rate is 100,000 times lower than STR's

Occur on both nuclear and mitochondrial DNA

SNP's occur on average every 100 – 300 base pairs Nazareth

SNP's

	Victim	PE	BF #01	BM #01	BU #02	
Amel	CC	CC	-	TT	TT	
65882	TC	TC	-	TC	TC	
68532	-	TC	-	TC	CC	
234217	CC	CC	-	TC	CC	
231480	TT	TT	-	TT	TT	
62059	-	-	-	TT	TT	
56608	-	TC	-	TC	TC	۲
61955	-	TT	-	TC	TC	
220875	-	TT	-	TT	TT	
58388	-	TT	-	TT	TT	
63799	CC	CC	-	CC	TC	
219561	TT	TT	-	TT	TT	
60188	-	CC	-	CC	CC	
182622	-	TC	-	TT	TT	
85187	-	TC	-	TC	TC	
212605	CC	CC	-	CC	CC	
58091	-	TT	-	TT	TT	
66026	-	TT	-	TC	TC	
63836	-	CC	-	CC	CC	
214373	TC	TC	-	TC	TT	
238155	TT	TT	-	TT	TT	۳

Two out of three SNP's involve replacing a C with a T

Of these, there is a panel of 70 chosen by Orchid BioSciences in for each C and T are equally likely

Many more SNP's are needed to reach STR likelihood levels

Used with Kinship Analysis

SNP Likelihood

- The Center for Genome Information concluded that although these 70 SNP's lack theoretical independence, allelic dependence was low enough for use in forensic identification
- Conservative likelihoods can be calculated even without the assumption of equi-probability. Heterozygous SNP's have a minimum likelihood of 2:

 $f = 2pq = 2p(1-p) \le 0.5 \forall p \in [0,1]; : L = 1/f \ge 2$

- Thus the minimum likelihood of a SNP profile containing n heterozygous alleles is 2^n
- Average profile has ~35 heterozygous alleles, minimum likelihood of $2^{35} \approx 10^{10}$

Summary

Statistics

- 2,753 victims (not including 10 hijackers)
- 21,814 total remains recovered
- 52,528 STR profiles
- 31,155 mtDNA profiles
- 16,938 SNP profiles
- Victims identified (as of 2/10/12): 1,633 (59%)
- Hijackers identified: 3 (out of 10)
- Remains identified: 12,811 (59%)

Identification Modalities

Of all the victims identified by a single modality, DNA represented 81% of the identifications

Of identifications made with multiple modalities, 87% included DNA

7/26/04 Statistics: "Who They Were" ©2005 Robert Shaler Forensics

Bibliography

Cash, Hoyle, Sutton, Development Under Extreme Conditions: Forensic Bioinformatics in the Wake of the World Trade Center Disaster (Pacific Symposium of BioComputing, 2003)

Hoyle, *Mathematics of Forensic DNA Identification* (American Academy of Forensic Science, 2003)

Mercer, Bioinformatics for 9/11 (Bio IT World, 2004)

Shaler, Who They Were: Inside the World Trade Center DNA Story (ISBN 1416584471)

Ribowsky, Dead Center: Behind the Scenes of the World's Largest Medical Examiner's Office (ISBN 0061189405)

Butler, Forensic DNA Typing (ISBN 0121479528)

Further Reading

FORENSIC

TYPING

JOHN M. BUTLER

INSIDE THE WORLD TRADE CENTER WHO DNA STORY: THE UNPRECEDENTED THEY EFFORT TO IDENTIFY THE MISSING

WERE

ROBERT C. SHALER Former Director of the Forense Biology Department, Office of the Chief Medical Examiner of New York Construction "Mart at becoming a multiple victim. We is the classific martial to with every get to the inner cannot and a bigs of the more field entries, executive produced, does a dis-

Biology, Tec Genetics of S

BEHIND THE SCENES AT THE WORLD'S LARGEST MEDICAL EXAMINER'S DIFICE

SHIYA RIBOWSKY

BIOCOMPUTING 2003

dited by an, A. Keith Dunker, fany A. Jung & Teri E. Klein

d Scientific

More Information

Web Site:

http://www.jonhoyle.com/MAASeaway

Slides:

http://www.jonhoyle.com/Presentations/ForensicMathNaz

Contact:

http://www.facebook.com/jonhoyle

