
Porting to the Carbon API

for Macintosh Developers
Jonathan Hoyle
Eastman Kodak

5/20/99

Mac OS 8.6
today

Sonata
Fall
‘99

Early ‘00

OS Release TimeLine

MacOS X DR/1

MacOS X DR/2

Mac OS X Architecture

Classic
(formerly Blue Box)

Cocoa
(formerly

Yellow Box)
Java

Common Services

Core OS

Carbon

Mac OS 8.x Architecture

Classic
App

Carbon Lib

MacOS 8.x

Carbon
App

Carbon Delivery
◆  Built into MacOS X
◆  Built into Sonata
◆  CarbonLib shared library for MacOS 8.1+
◆  PowerPC only
◆  Carbon apps will look like any Classic app

on MacOS 8.x
◆  “Lite CarbonLib” available now
◆  CodeWarrior 5 supports Carbon (June ‘99)

WWDC ‘99 Tools
MacOS X DR/1
◆  Carbon SDK
◆  LiteCarbonLib
◆  Sample code & utilities

CW for MacOS X & Carbon
◆  CW 4->4.1 Updater
◆  Carbonated PP & MSL
◆  CFM & Mach-O Carbon compilers
◆  samples & other goodies

Carbon Technical Issues
◆  Carbon apps use new exe format
◆  Two flavors of apps: CFM and Mach-O
◆  PowerPlant apps must use Carbonized PP
◆  Carbon apps can assume 8.1 as baseline
◆  Carbon apps still must check OS version

for later calls. (For example, CarbonLib on 8.1
doesn’t support new 8.5 calls.)

◆  Carbon apps can print to Classic drivers

Carbon Technical Issues

All Carbon apps have access to:
◆ Everything in 8.1
◆ Navigation Services
◆ CoreFoundation “classes”:

CFString, CFBoolean, CFArray, CFSet,
CFPreferences, CFPlugin, etc.

◆ Carbon Events

Classic Applications
◆  No longer inside a “box”
◆  Receive little benefit from MacOS X
◆  Not preemptive, share same memory
◆  All 68K apps are classic
◆  Apps compiled in the older binary format

are classic, even if the source code is
Carbon compliant.

◆  A “fat” format (if any) is TBD.

What About Cocoa?
◆  Mac OS X only
◆  Not available for Sonata
◆  No CocoaLib for MacOS 8.x
◆  No longer committing to Windows support
◆  OpenStep API
◆  No CFM, Mach-O executable type only
◆  Requires Objective C or Java

Carbon API’s

8200 Mac ToolBox Calls

Carbon:
3/4 of the
ToolBox

A typical app
uses > 90%
Carbon API’s

Gone for Carbon
◆  Standard File (use Nav Services)

◆  Appletalk (exists only at the Core OS)

◆  QuickDraw GX
◆  QuickDraw 3D (use OpenGL)

◆  Balloon Help (use new Carbon Help)

◆  MFS File System, Working Directories
◆  Edition Manager, themes, sundry others
◆  Low Memory, Segment Loader, 68K-isms

Support in Carbon
◆  Common Managers: QuickDraw, Window, etc.

◆  Apple Events
◆  Open Transport
◆  Printing API (modified)

◆  Game Sprockets
◆  Dictionary Manager (partially supported)

◆  SCSI Manager (partially supported)

◆  Other HW: Use Dev Mgr on 8.x, IOKit for Mac OS X

Not Available in DR/1
◆  QuickTime
◆  Sound Manager
◆  Speech Manager
◆  Display Manager
◆  AppleScript
◆  ColorSync
◆  TextServices Manager
◆  Text Encoding

Steps in Porting
◆  Carbon Overview video from WWDC ‘99
◆  Use CarbonDater on current PPC app
◆  Use Carbonized Universal Headers
◆  #define TARGET_CARBON 1
◆  Link with CarbonLib
◆  Make sure all other lib’s are Carbonized
◆  Replace Low Memory accesses
◆  Handle Opaque Data Structures

What structs are opaque?
◆  WindowRecords, DialogRecords, etc.
◆  Menus
◆  Controls
◆  Ports
◆  Regions
◆  Lists
◆  See Table 2-2 in Carbon Porting Guide

Opaque Data Structures
In MacOS 8, Regions are transparent:

short getLeftCorner(RgnHandle inRgnHdl)
{

return (**inRgnHdl).rgnBBox.left;
}

In MacOS X, Regions are opaque:
short getLeftCorner(RgnHandle inRgnHdl)
{

Rect rgnRect;
GetRegionBounds(inRgnHdl, &rgnRect);
return rgnRect.left;

}

Opaque Data Structures
In MacOS 8, GrafPtr = WindowPtr = DialogPtr:

void DrawLine(WindowPtr inWindowPtr)
{

SetPort(inWindowPtr);
LineTo(100, 100);

}

In MacOS X, you must use accessors:
void DrawLine(WindowPtr inWindowPtr)
{

GrafPtr theGrafPtr = GetWindowPort(inWindowPtr);
SetPort(theGrafPtr);
LineTo(100, 100);

}

XQ & A

